Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 May;15(5):598-610.
doi: 10.1046/j.1540-8167.2004.03277.x.

Potassium channels and membrane potential in the modulation of intracellular calcium in vascular endothelial cells

Affiliations
Review

Potassium channels and membrane potential in the modulation of intracellular calcium in vascular endothelial cells

David J Adams et al. J Cardiovasc Electrophysiol. 2004 May.

Abstract

The endothelium plays a vital role in the control of vascular functions, including modulation of tone; permeability and barrier properties; platelet adhesion and aggregation; and secretion of paracrine factors. Critical signaling events in many of these functions involve an increase in intracellular free Ca(2+) concentration ([Ca(2+)](i)). This rise in [Ca(2+)](i) occurs via an interplay between several mechanisms, including release from intracellular stores, entry from the extracellular space through store depletion and second messenger-mediated processes, and the establishment of a favorable electrochemical gradient. The focus of this review centers on the role of potassium channels and membrane potential in the creation of a favorable electrochemical gradient for Ca(2+) entry. In addition, evidence is examined for the existence of various classes of potassium channels and the possible influence of regional variation in expression and experimental conditions.

PubMed Disclaimer

MeSH terms

LinkOut - more resources