Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jun;98(6):940-50.
doi: 10.1016/j.jinorgbio.2004.03.001.

Products of Cu(II)-catalyzed oxidation in the presence of hydrogen peroxide of the 1-10, 1-16 fragments of human and mouse beta-amyloid peptide

Affiliations

Products of Cu(II)-catalyzed oxidation in the presence of hydrogen peroxide of the 1-10, 1-16 fragments of human and mouse beta-amyloid peptide

Teresa Kowalik-Jankowska et al. J Inorg Biochem. 2004 Jun.

Abstract

The interactions of proteins with reactive oxygen species (ROS) may result in covalent modifications of amino acid residues in proteins, formation of protein-protein cross-linkages, and oxidation of the protein backbone resulting in protein fragmentation. In an attempt to elucidate the products of the metal-catalyzed oxidation of the human (H) and mouse (M) (1-10H), (1-10M), (1-16H) and (1-16M) fragments of beta-amyloid peptide, the high performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) methods and Cu(II)/H(2)O(2) as a model oxidizing system were employed. Peptide solution (0.50 mM) was incubated at 37 degrees C for 24 h with metal:peptide:H(2)O(2) molar ratio 1:1:1 for the (1-16H), (1-16M) fragments, and 1:1:2 for the (1-10H), (1-10M) peptides in phosphate buffer, pH 7.4. Oxidation targets for all peptide studied are the histidine residues coordinated to the metal ions. For the (1-16H) peptide are likely His(13) and/or His(14), and for the (1-16M) fragment His(6) and/or His(14), which are converted to 2-oxo-His. Metal-binding residue, the aspartic acid (D(1)) undergoes the oxidative decarboxylation and deamination to pyruvate. The cleavages of the peptide bonds by either the diamide or alpha-amidation pathways were also observed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources