Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jun;286(6):C1312-23.
doi: 10.1152/ajpcell.00426.2002.

Channel-forming peptide modulates transepithelial electrical conductance and solute permeability

Affiliations
Free article

Channel-forming peptide modulates transepithelial electrical conductance and solute permeability

James R Broughman et al. Am J Physiol Cell Physiol. 2004 Jun.
Free article

Abstract

NC-1059, a synthetic channel-forming peptide, transiently increases transepithelial electrical conductance (g(TE)) and ion transport (as indicated by short-circuit current) across Madin-Darby canine kidney (MDCK) cell monolayers in a time- and concentration-dependent manner when apically exposed. g(TE) increases from <2 to >40 mS/cm(2) over the low to middle micromolar range. Dextran polymer (9.5 but not 77 kDa) permeates the monolayer following apical NC-1059 exposure, suggesting that modulation of the paracellular pathway accounts for changes in g(TE). However, concomitant alterations in junctional protein localization (zonula occludens-1, occludin) and cellular morphology are not observed. Effects of NC-1059 on MDCK g(TE) occur in nominally Cl(-)- and Na(+)-free apical media, indicating that permeation by these ions is not required for effects on g(TE), although two-electrode voltage-clamp assays with Xenopus oocytes suggest that both Cl(-) and Na(+) permeate NC-1059 channels with a modest Cl(-) permselectivity (P(Cl):P(Na) = 1.3). MDCK monolayers can be exposed to multiple NC-1059 treatments over days to weeks without diminution of response, alteration in the time course, or loss of responsiveness to physiological and pharmacological secretagogues. Together, these results suggest that NC-1059 represents a valuable tool to investigate tight junction regulation and may be a lead compound for therapeutic interventions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources