Integrated modeling of clinical and gene expression information for personalized prediction of disease outcomes
- PMID: 15152076
- PMCID: PMC420411
- DOI: 10.1073/pnas.0401736101
Integrated modeling of clinical and gene expression information for personalized prediction of disease outcomes
Abstract
We describe a comprehensive modeling approach to combining genomic and clinical data for personalized prediction in disease outcome studies. This integrated clinicogenomic modeling framework is based on statistical classification tree models that evaluate the contributions of multiple forms of data, both clinical and genomic, to define interactions of multiple risk factors that associate with the clinical outcome and derive predictions customized to the individual patient level. Gene expression data from DNA microarrays is represented by multiple, summary measures that we term metagenes; each metagene characterizes the dominant common expression pattern within a cluster of genes. A case study of primary breast cancer recurrence demonstrates that models using multiple metagenes combined with traditional clinical risk factors improve prediction accuracy at the individual patient level, delivering predictions more accurate than those made by using a single genomic predictor or clinical data alone. The analysis also highlights issues of communicating uncertainty in prediction and identifies combinations of clinical and genomic risk factors playing predictive roles. Implicated metagenes identify gene subsets with the potential to aid biological interpretation. This framework will extend to incorporate any form of data, including emerging forms of genomic data, and provides a platform for development of models for personalized prognosis.
Figures





Similar articles
-
Towards integrated clinico-genomic models for personalized medicine: combining gene expression signatures and clinical factors in breast cancer outcomes prediction.Hum Mol Genet. 2003 Oct 15;12 Spec No 2:R153-7. doi: 10.1093/hmg/ddg287. Epub 2003 Aug 19. Hum Mol Genet. 2003. PMID: 12928487 Review.
-
Gene expression predictors of breast cancer outcomes.Lancet. 2003 May 10;361(9369):1590-6. doi: 10.1016/S0140-6736(03)13308-9. Lancet. 2003. PMID: 12747878
-
Pathway-Structured Predictive Model for Cancer Survival Prediction: A Two-Stage Approach.Genetics. 2017 Jan;205(1):89-100. doi: 10.1534/genetics.116.189191. Epub 2016 Nov 9. Genetics. 2017. PMID: 28049703 Free PMC article.
-
Bayesian analysis of binary prediction tree models for retrospectively sampled outcomes.Biostatistics. 2004 Oct;5(4):587-601. doi: 10.1093/biostatistics/kxh011. Biostatistics. 2004. PMID: 15475421
-
Expression genomics in breast cancer research: microarrays at the crossroads of biology and medicine.Breast Cancer Res. 2007;9(2):206. doi: 10.1186/bcr1662. Breast Cancer Res. 2007. PMID: 17397520 Free PMC article. Review.
Cited by
-
Statistical expression deconvolution from mixed tissue samples.Bioinformatics. 2010 Apr 15;26(8):1043-9. doi: 10.1093/bioinformatics/btq097. Epub 2010 Mar 4. Bioinformatics. 2010. PMID: 20202973 Free PMC article.
-
Construction and Evaluation of a Clinical Prediction Scoring System for Positive Cervical Margins Under Colposcopy.Front Med (Lausanne). 2022 Feb 28;9:807849. doi: 10.3389/fmed.2022.807849. eCollection 2022. Front Med (Lausanne). 2022. PMID: 35295609 Free PMC article.
-
Cancer-risk module identification and module-based disease risk evaluation: a case study on lung cancer.PLoS One. 2014 Mar 18;9(3):e92395. doi: 10.1371/journal.pone.0092395. eCollection 2014. PLoS One. 2014. PMID: 24643254 Free PMC article.
-
Post-genomic clinical trials: the perspective of ACGT.Ecancermedicalscience. 2008;2:66. doi: 10.3332/eCMS.2008.66. Epub 2008 Jan 21. Ecancermedicalscience. 2008. PMID: 22275963 Free PMC article. No abstract available.
-
Modeling Protein Expression and Protein Signaling Pathways.J Am Stat Assoc. 2011;107(500):1372-1384. doi: 10.1080/01621459.2012.706121. J Am Stat Assoc. 2011. PMID: 26246646 Free PMC article.
References
-
- Huang, E., Cheng, S., Dressman, H., Pittman, J., Tsou, M.-H., Horng, C.-F., Bild, A., Iversen, E., Liao, M., Chen, C.-M., et al. (2003) Lancet 361, 1590-1596. - PubMed
-
- Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., Pollack, J. R., Ross, D. T., Johnsen, H., Akslen, L. A., et al. (2001) Nature 406, 747-752. - PubMed
-
- Spang, R., Zuzan, H., West, M., Nevins, J., Blanchette, C. & Marks, J. (2002) In Silico Biol. 2, 369-381. - PubMed
-
- van' t Veer, L., Dai, H., van de Vijver, M., He, Y., Hart, A., Mao, M., Peterse, H., van der Kooy, K., Marton, M., Witteveen, A., et al. (2002) Nature 415, 530-536. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical