Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Apr 21;49(8):1485-504.
doi: 10.1088/0031-9155/49/8/008.

A spatio-temporal simulation model of the response of solid tumours to radiotherapy in vivo: parametric validation concerning oxygen enhancement ratio and cell cycle duration

Affiliations

A spatio-temporal simulation model of the response of solid tumours to radiotherapy in vivo: parametric validation concerning oxygen enhancement ratio and cell cycle duration

Vassilis P Antipas et al. Phys Med Biol. .

Abstract

Advanced bio-simulation methods are expected to substantially improve radiotherapy treatment planning. To this end a novel spatio-temporal patient-specific simulation model of the in vivo response of malignant tumours to radiotherapy schemes has been recently developed by our group. This paper discusses recent improvements to the model: an optimized algorithm leading to conformal shrinkage of the tumour as a response to radiotherapy, the introduction of the oxygen enhancement ratio (OER), a realistic initial cell phase distribution and finally an advanced imaging-based algorithm simulating the neovascularization field. A parametric study of the influence of the cell cycle duration Tc, OER, OERbeta for the beta LQ parameter on tumour growth. shrinkage and response to irradiation under two different fractionation schemes has been made. The model has been applied to two glioblastoma multiforme (GBM) cases, one with wild type (wt) and another one with mutated (mt) p53 gene. Furthermore, the model has been applied to a hypothetical GBM tumour with alpha and beta values corresponding to those of generic radiosensitive tumours. According to the model predictions, a whole tumour with shorter Tc tends to repopulate faster, as is to be expected. Furthermore, a higher OER value for the dormant cells leads to a more radioresistant whole tumour. A small variation of the OERbeta value does not seem to play a major role in the tumour response. Accelerated fractionation proved to be superior to the standard scheme for the whole range of the OER values considered. Finally, the tumour with mt p53 was shown to be more radioresistant compared to the tumour with wt p53. Although all simulation predictions agree at least qualitatively with the clinical experience and literature, a long-term clinical adaptation and quantitative validation procedure is in progress.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources