Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 May;24(5):271-81.
doi: 10.1089/107999004323065057.

The role of human mast cell-derived cytokines in eosinophil biology

Affiliations
Review

The role of human mast cell-derived cytokines in eosinophil biology

Bita Shakoory et al. J Interferon Cytokine Res. 2004 May.

Abstract

Eosinophil-mediated diseases, such as allergic asthma, eosinophilic fasciitis, and certain hypersensitivity pulmonary disorders, are characterized by eosinophil infiltration and tissue injury. Mast cells and T cells often colocalize to these areas. Recent data suggest that mast cells can contribute to eosinophil-mediated inflammatory responses. Activation of mast cells can occur by antigen and immunoglobulin E (IgE) via the high-affinity receptor (FcepsilonRI) for IgE. The liberation of proteases, leukotrienes, lipid mediators, and histamine can contribute to tissue inflammation and allow recruitment of eosinophils to tissue. In addition, the synthesis and expression of a plethora of cytokines and chemokines (such as granulocyte-macrophage colony-stimulating factor [GM-CSF], interleukin-1 [IL-1], IL-3, IL-5, tumor necrosis factor-alpha [TNF-alpha], and the chemokines IL-8, regulated upon activation normal T cell expressed and secreted [RANTES], monocyte chemotactic protein-1 [MCP-1], and eotaxin) by mast cells can influence eosinophil biology. Stem cell factor (SCF)-c-kit, cytokine-cytokine receptor, and chemokine-chemokine receptor (CCR3) interactions leading to nuclear factor kappaB (NF-kappaB), mitogen-activated protein kinase (MAPK) expression, and other signaling pathways can modulate eosinophil function. Eosinophil hematopoiesis, activation, survival, and elaboration of mediators can all be regulated thus by mast cells in tissue. Moreover, because eosinophils can secrete SCF, eosinophils can regulate mast cell function in a paracrine manner. This two-way interaction between eosinophils and mast cells can pave the way for chronic inflammatory responses in a variety of human diseases. This review summarizes this pivotal interaction between human mast cells and eosinophils.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources