Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jun;55(6):979-87.
doi: 10.1203/01.pdr.0000127722.55965.b3.

L-lysine decreases nitric oxide production and increases vascular resistance in lungs isolated from lipopolysaccharide-treated neonatal pigs

Affiliations

L-lysine decreases nitric oxide production and increases vascular resistance in lungs isolated from lipopolysaccharide-treated neonatal pigs

Barney W Carter Jr et al. Pediatr Res. 2004 Jun.

Abstract

Nitric oxide (NO) production may depend on the uptake of L-arginine (L-arg), the substrate for NO synthase in inflammatory lung diseases. The cellular transport of L-arg occurs via the cationic amino acid transporters (CAT), and L-lysine (L-lys) competitively inhibits CAT. Neonatal pigs were treated with lipopolysaccharide (LPS) or vehicle for 4 h. LPS increased exhaled NO (exNO; 0.026 +/- 0.003 to 0.046 +/- 0.003 nmol. kg(-1). min(-1); p < 0.005) and decreased mean systemic arterial blood pressure (89 +/- 4 to 67 +/- 4 mm Hg; p < 0.05), whereas vehicle did not affect exNO or mean systemic arterial blood pressure. The lungs were then isolated and perfused; exNO was greater in lungs from LPS-treated animals (0.08 +/- 0.01 nmol/kg/min) than in lungs from vehicle-treated animals (0.05 +/- 0.01 nmol. kg(-1). min(-1); p < 0.05). The addition of L-arg (0.3 mM) significantly (p < 0.05) increased exNO production in both groups of lungs (mean increase 0.04 +/- 0.01 nmol. kg(-1). min(-1) LPS-treated lungs, p < 0.05; mean increase 0.02 +/- 0.01 nmol. kg(-1). min(-1) vehicle-treated lungs); however, L-arg decreased pulmonary vascular resistance (PVR) only in LPS-treated lungs (mean decrease 0.03 +/- 0.01 mm Hg. ml(-1). kg(-1). min(-1), p < 0.05). L-lys caused a dose-dependent decrease in exNO production and a dose-dependent increase in PVR in LPS-treated lungs. L-lys decreased exNO only at 30 mM and had no effect on PVR in vehicle-treated lungs. In four lungs each from vehicle- and LPS-treated animals, reverse transcriptase-PCR demonstrated CAT-2 mRNA only in LPS-treated animals. These results suggest that the increased NO production in the lungs from LPS-treated animals depends on the uptake of vascular L-arg.

PubMed Disclaimer

Publication types