Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Jun 1;43(21):6511-8.
doi: 10.1021/bi036049+.

The factors governing the thermal stability of frataxin orthologues: how to increase a protein's stability

Affiliations
Comparative Study

The factors governing the thermal stability of frataxin orthologues: how to increase a protein's stability

Salvatore Adinolfi et al. Biochemistry. .

Abstract

Understanding the factors governing the thermal stability of proteins and correlating them to the sequence and structure is a complex and multiple problem that can nevertheless provide important information on the molecular forces involved in protein folding. Here, we have carried out a comparative genomic study to analyze the effects that different intrinsic and environmental factors have on the thermal stability of frataxins, a family of small mitochondrial iron-binding proteins found in organisms ranging from bacteria to humans. Low expression of frataxin in humans causes Friedreich's ataxia, an autosomal recessive neurodegenerative disease. The human, yeast, and bacterial orthologues were selected as representatives of different evolutionary steps. Although sharing high sequence homology and the same three-dimensional fold, the three proteins have a large variability in their thermal stabilities. Whereas bacterial and human frataxins are thermally stable, well-behaved proteins, under the same conditions yeast frataxin exists in solution as an unstable species with apprechable tracts in a conformational exchange. By designing suitable mutants, we show and justify structurally that the length of the C-terminus is an important intrinsic factor that directly correlates with the thermal stabilities of the three proteins. Thermal stability is also gained by the addition of Fe(2+). This effect, however, is not uniform for the three orthologues nor highly specific for iron: a similar albeit weaker stabilization is observed with other mono- and divalent cations. We discuss the implications that our findings have for the role of frataxins as iron-binding proteins.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data

LinkOut - more resources