Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 May 24:5:11.
doi: 10.1186/1471-2156-5-11.

Patterns of linkage disequilibrium and haplotype distribution in disease candidate genes

Affiliations

Patterns of linkage disequilibrium and haplotype distribution in disease candidate genes

Ji-Rong Long et al. BMC Genet. .

Abstract

Background: The adequacy of association studies for complex diseases depends critically on the existence of linkage disequilibrium (LD) between functional alleles and surrounding SNP markers.

Results: We examined the patterns of LD and haplotype distribution in eight candidate genes for osteoporosis and/or obesity using 31 SNPs in 1,873 subjects. These eight genes are apolipoprotein E (APOE), type I collagen alpha1 (COL1A1), estrogen receptor-alpha (ER-alpha), leptin receptor (LEPR), parathyroid hormone (PTH)/PTH-related peptide receptor type 1 (PTHR1), transforming growth factor-beta1 (TGF-beta1), uncoupling protein 3 (UCP3), and vitamin D (1,25-dihydroxyvitamin D3) receptor (VDR). Yin yang haplotypes, two high-frequency haplotypes composed of completely mismatching SNP alleles, were examined. To quantify LD patterns, two common measures of LD, D' and r2, were calculated for the SNPs within the genes. The haplotype distribution varied in the different genes. Yin yang haplotypes were observed only in PTHR1 and UCP3. D' ranged from 0.020 to 1.000 with the average of 0.475, whereas the average r2 was 0.158 (ranging from 0.000 to 0.883). A decay of LD was observed as the intermarker distance increased, however, there was a great difference in LD characteristics of different genes or even in different regions within gene.

Conclusion: The differences in haplotype distributions and LD patterns among the genes underscore the importance of characterizing genomic regions of interest prior to association studies.

PubMed Disclaimer

Figures

Figure 1
Figure 1
An exponential decay function was employed to fit the relationship between LD and the physical distance between SNP markers within each gene (SigmaPlot 2000, SPSS Inc., Chicago, IL). X-axis is the physical distance in the unit of base pair.

References

    1. Ardlie KG, Kruglyak L, Seielstad M. Patterns of linkage disequilibrium in the human genome. Nat Rev Genet. 2002;3:299–309. doi: 10.1038/nrg777. - DOI - PubMed
    1. Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, Lavery T, Kouyoumjian R, Farhadian SF, Ward R, Lander ES. Linkage disequilibrium in the human genome. Nature. 2001;411:199–204. doi: 10.1038/35075590. - DOI - PubMed
    1. Wall JD, Pritchard JK. Haplotype blocks and linkage disequilibrium in the human genome. Nat Rev Genet. 2003;4:587–597. doi: 10.1038/nrg1123. - DOI - PubMed
    1. Moffatt MF, Traherne JA, Abecasis GR, Cookson WO. Single nucleotide polymorphism and linkage disequilibrium within the TCR alpha/delta locus. Hum Mol Genet. 2000;9:1011–1019. doi: 10.1093/hmg/9.7.1011. - DOI - PubMed
    1. Stephens JC, Schneider JA, Tanguay DA, Choi J, Acharya T, Stanley SE, Jiang R, Messer CJ, Chew A, Han JH, Duan J, Carr JL, Lee MS, Koshy B, Kumar AM, Zhang G, Newell WR, Windemuth A, Xu C, Kalbfleisch TS, Shaner SL, Arnold K, Schulz V, Drysdale CM, Nandabalan K, Judson RS, Ruano G, Vovis GF. Haplotype variation and linkage disequilibrium in 313 human genes. Science. 2001;293:489–493. doi: 10.1126/science.1059431. - DOI - PubMed

Publication types

MeSH terms