Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Mar 22;1636(2-3):136-50.
doi: 10.1016/j.bbalip.2003.10.013.

Attenuation of lipid peroxidation by antioxidants in rat-1 fibroblasts: comparison of the lipid peroxidation reporter molecules cis-parinaric acid and C11-BODIPY(581/591) in a biological setting

Affiliations
Comparative Study

Attenuation of lipid peroxidation by antioxidants in rat-1 fibroblasts: comparison of the lipid peroxidation reporter molecules cis-parinaric acid and C11-BODIPY(581/591) in a biological setting

Gregor P C Drummen et al. Biochim Biophys Acta. .

Erratum in

  • Biochim Biophys Acta. 2004 Aug 30;1684(1-3): 63

Abstract

Lipid peroxidation is a major factor in the pathogenesis of many disease states. To detect the initial stages of lipid peroxidation or evaluate antioxidant efficacy, cis-parinaric acid (cis-PnA) has been successfully used and thoroughly validated. However, cis-PnA is not very well suited for medium throughput screening of antioxidants in living cells. We recently introduced and validated a lipid peroxidation reporter molecule, C11-BODIPY(581/591). To further explore this probe, we evaluated the protective effect of 12 natural antioxidants in rat-1 fibroblasts subjected to 50 microM cumene-hydroperoxide using both probes. The same pecking order for the individual antioxidant efficacies was obtained: alpha-tocopherol approximately gamma-tocopherol > quercetin approximately lycopene > kaempferol > palm oil > hydroxy-tyrosol > > alpha-carotene = beta-carotene = lutein = tyrosol = chlorogenic acid. This validates the accuracy of the C11-BODIPY(581/591) method and shows that this assay is an accurate and highly flexible method for indexing lipid peroxidation or determining antioxidant efficacy in living cells in a medium throughput scenario. The antioxidant efficacy was compared with their one-electron reduction potential, hydrophobicity and Trolox C equivalent antioxidant capacity. Our results show that although these parameters are valuable for determining structure-function relationships, they have limited predictive value for antioxidant efficacy in vivo.

PubMed Disclaimer

Publication types

LinkOut - more resources