Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul 9;95(1):100-8.
doi: 10.1161/01.RES.0000133677.77465.38. Epub 2004 May 27.

Contribution of fluid shear response in leukocytes to hemodynamic resistance in the spontaneously hypertensive rat

Affiliations
Free article

Contribution of fluid shear response in leukocytes to hemodynamic resistance in the spontaneously hypertensive rat

Shunichi Fukuda et al. Circ Res. .
Free article

Abstract

The mechanisms for elevation of peripheral vascular resistance in spontaneously hypertensive rats (SHR), a glucocorticoid-dependent form of hypertension, are unresolved. An increase in hemodynamic resistance caused by circulating blood may be a factor. Physiological fluid shear stress induces a variety of responses in circulating leukocytes, including pseudopod retraction. Due to high rigidity, leukocytes with pseudopods have greater difficulty to pass through capillaries. Because SHR have more circulating leukocytes with pseudopods, we hypothesize that inhibition of the leukocyte shear response by glucocorticoids in SHR impairs normal leukocyte passage through capillaries and causes enhanced resistance in capillary channels. Fluid shear leads to retraction of pseudopods in normal leukocytes, whereas shear induces pseudopod projection in SHR and dexamethasone-treated Wistar rats. The high incidence of circulating leukocytes with pseudopods results in slower cell passage through capillaries under normal blood flow and during reduced flow enhanced capillary plugging both in vivo and in vitro. SHR blood requires higher pressure (90.0+/-8.2 mm Hg) than Wistar Kyoto rat (WKY, 69.6+/-6.5 mm Hg; P<0.0001) or adrenalectomized SHR (73.5+/-2.1 mm Hg; P=0.0009) at the same flow rate in the resting hemodynamically isolated skeletal muscle microcirculation. Intravenous injection of blood from SHR, but not WKY, causes blood pressure increase in normal rats, which depends on pseudopod formation. We conclude that in addition to enhanced vascular tone, pseudopod formation with lack of normal fluid shear response may serve as mechanisms for an elevated hemodynamic resistance in SHR.

PubMed Disclaimer

Publication types

LinkOut - more resources