Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Oct;311(1):109-14.
doi: 10.1124/jpet.104.068312. Epub 2004 May 27.

Fenofibrate impairs rat mitochondrial function by inhibition of respiratory complex I

Affiliations

Fenofibrate impairs rat mitochondrial function by inhibition of respiratory complex I

Barbara Brunmair et al. J Pharmacol Exp Ther. 2004 Oct.

Abstract

Fibrates are used for the treatment of dyslipidemia and known to affect mitochondrial function in vitro. To better understand the mechanisms underlying their mitochondrial effects, fibrate actions on complex I of the respiratory chain and cell respiration were studied in vitro. In homogenates of rat skeletal muscle, fenofibrate, and to a lesser extent clofibrate, reduced the activity of complex I (10, 30, and 100 microM fenofibrate: -41 +/- 7%, -70 +/- 2%, and -78 +/- 4%; 100 microM clofibrate: -27 +/- 7%; p < 0.005 each). Inhibition of complex I by fenofibrate (100 microM) was confirmed by reduced state 3 respiration of isolated mitochondria consuming glutamate + malate as substrates for complex I (-33 +/- 4%; p < 0.0005), but not of such consuming succinate as substrate for complex II (-8 +/- 4%; NS). In isolated rat muscle, 24-h fenofibrate exposure (25, 50, and 100 microM) decreased CO(2) production from palmitate (-15 +/- 7%, -23 +/- 8%, and -22 +/- 7%; p < 0.05 each) and increased lactate release (+15 +/- 5%, +14 +/- 5%, and + 17 +/- 6%; p < 0.02 each) indicating impaired cell respiration. Ciprofibrate and gemfibrocil (but not bezafibrate) impaired cell respiration without any inhibition of complex I. Our findings support the notion that individual fibrates induce mitochondrial dysfunction via different molecular mechanisms and show that fenofibrate predominantly acts by inhibition of complex I of the respiratory chain.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources