Carboxyl-terminal processing may be essential for production of active NiFe hydrogenase in Azotobacter vinelandii
- PMID: 1516712
- DOI: 10.1016/0014-5793(92)80809-u
Carboxyl-terminal processing may be essential for production of active NiFe hydrogenase in Azotobacter vinelandii
Abstract
The NiFe hydrogenase from Azotobacter vinelandii is a membrane-bound alpha beta heterodimer that can oxidize H2 to protons and electrons and thereby provide energy. Genes encoding the alpha and beta subunits, hoxG and hoxK respectively, followed by thirteen contiguous accessory genes potentially involved in H2 oxidation, have been previously sequenced. Mutations in some of these accessory genes give rise to inactive enzyme containing an alpha subunit with decreased electrophoretic mobility. Mass spectral analysis of the subunits demonstrated that the alpha subunit had a molecular weight 1,663 Da less than that predicted from hoxG. Since the N-terminal sequence of the purified alpha subunit matches the sequence predicted from hoxG we suggest this difference is due to removal of the C-terminus of the alpha subunit which may be an important step linked to metal insertion, localization, and formation of active hydrogenase.
Similar articles
-
Cloning, sequencing and characterization of the [NiFe]hydrogenase-encoding structural genes (hoxK and hoxG) from Azotobacter vinelandii.Gene. 1990 Nov 30;96(1):67-74. doi: 10.1016/0378-1119(90)90342-o. Gene. 1990. PMID: 2265761
-
The hypE gene completes the gene cluster for H2-oxidation in Azotobacter vinelandii.J Mol Biol. 1994 Feb 11;236(1):390-6. doi: 10.1006/jmbi.1994.1149. J Mol Biol. 1994. PMID: 7906310
-
Nucleotide sequences and genetic analysis of hydrogen oxidation (hox) genes in Azotobacter vinelandii.J Bacteriol. 1992 Jul;174(14):4549-57. doi: 10.1128/jb.174.14.4549-4557.1992. J Bacteriol. 1992. PMID: 1624446 Free PMC article.
-
The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio.FEMS Microbiol Rev. 1988 Dec;4(4):299-344. doi: 10.1111/j.1574-6968.1988.tb02748.x. FEMS Microbiol Rev. 1988. PMID: 3078655 Review.
-
Structure-function relationships among the nickel-containing hydrogenases.FEMS Microbiol Rev. 1992 Feb;8(2):109-35. doi: 10.1111/j.1574-6968.1992.tb04960.x. FEMS Microbiol Rev. 1992. PMID: 1558764 Review.
Cited by
-
Nickel availability to pea (Pisum sativum L.) plants limits hydrogenase activity of Rhizobium leguminosarum bv. viciae bacteroids by affecting the processing of the hydrogenase structural subunits.J Bacteriol. 1994 Sep;176(17):5297-303. doi: 10.1128/jb.176.17.5297-5303.1994. J Bacteriol. 1994. PMID: 8071205 Free PMC article.
-
Delimiting the Function of the C-Terminal Extension of the Escherichia coli [NiFe]-Hydrogenase 2 Large Subunit Precursor.Front Microbiol. 2019 Sep 24;10:2223. doi: 10.3389/fmicb.2019.02223. eCollection 2019. Front Microbiol. 2019. PMID: 31611859 Free PMC article.
-
HupW protease specifically required for processing of the catalytic subunit of the uptake hydrogenase in the cyanobacterium Nostoc sp. strain PCC 7120.Appl Environ Microbiol. 2012 Jan;78(1):273-6. doi: 10.1128/AEM.05957-11. Epub 2011 Oct 21. Appl Environ Microbiol. 2012. PMID: 22020512 Free PMC article.
-
Molecular biology of membrane-bound H2 uptake hydrogenases.Arch Microbiol. 1994;161(1):1-10. doi: 10.1007/BF00248887. Arch Microbiol. 1994. PMID: 8304820 Review. No abstract available.
-
Carboxy-terminal processing of the large subunit of [Fe] hydrogenase from Desulfovibrio desulfuricans ATCC 7757.J Bacteriol. 1999 May;181(9):2947-52. doi: 10.1128/JB.181.9.2947-2952.1999. J Bacteriol. 1999. PMID: 10217791 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources