Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2004 Jun;62(6):724-9.
doi: 10.1016/j.joms.2004.01.009.

Tissue-engineered bone for maxillary sinus augmentation

Affiliations
Clinical Trial

Tissue-engineered bone for maxillary sinus augmentation

Ronald Schimming et al. J Oral Maxillofac Surg. 2004 Jun.

Abstract

Purpose: Autologous, allogenic, and alloplastic materials for bony reconstruction in the craniomaxillofacial region have specific drawbacks stimulating the ongoing search for new materials. Cultivated skin and mucosa grafts are in clinical routine use in head and neck reconstruction but so far, to the best of our knowledge, no successful clinical application has been described of periosteum-derived tissue-engineered bone for augmentation of the edentulous posterior maxilla.

Patients and methods: In a clinical study, augmentation of the posterior maxilla was carried out using a bone matrix derived from mandibular periosteum cells on an Ethisorb (Ethicon, Norderstedt, Germany) fleece. In this report, we show the fabrication of the matrix, clinical application, and results in 27 patients.

Results: In 18 patients, an excellent clinical, radiologic, and histologic result could be proved 3 months after augmentation. Histologically, the bone biopsy samples from these patients revealed mineralized trabecular bone with remnants of the biomaterial. An unsuccessful result was found in 8 cases with a more extended augmentation procedure. The clinical inspection 3 months after augmentation showed almost no formation of new bone. In contrast, a replacement resorption with connective tissue was found. This may be the result of failure of the initial supply of the cells embedded within large cell-polymer constructs with sufficient oxygen and nutrients to sustain their survival and proliferation and allow for the integration of the developing tissue within the surrounding tissue.

Conclusion: Our achieved results suggest that periosteum-derived osteoblasts on a suitable matrix can form lamellar bone within 3 months after transplantation and provide a reliable basis for simultaneous or secondary insertion of dental implants.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources