Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004:259:132-41; discussion 141-5, 163-9.

Dual roles of histone deacetylases in the control of cardiac growth

Affiliations
  • PMID: 15171251
Review

Dual roles of histone deacetylases in the control of cardiac growth

Timothy A McKinsey et al. Novartis Found Symp. 2004.

Abstract

Diverse aetiological factors, including myocardial infarction, hypertension and contractile abnormalities, trigger a cardiac remodelling process in which the heart becomes abnormally enlarged with a consequent decline in cardiac function and eventual heart failure. Pathological cardiac hypertrophy is accompanied by the activation of a fetal cardiac gene programme, which contributes to maladaptive changes in contractility and calcium handling. Traditional treatment for heart failure involves administration of drugs that antagonize early signalling events at or near the cell membrane (e.g. cell surface receptor or ion channels). Given the complexity and redundant nature of the signalling networks that drive cardiac pathogenesis, a potentially more efficacious therapeutic strategy for disrupting the disease process would be to target common downstream elements in pathological signalling cascades. We have shown that class II histone deacetylases (HDACs) suppress cardiac hypertrophy, and mice lacking class II HDACs are sensitized to hypertrophic signals. Paradoxically, HDAC inhibitors also block cardiac hypertrophy and fetal gene activation. Based on these findings, we propose that distinct HDACs play positive or negative roles in the control of cardiac growth by regulating opposing sets of target genes via their interactions with different sets of transcription factors.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources