A core catalytic domain of the TyrA protein family: arogenate dehydrogenase from Synechocystis
- PMID: 15171683
- PMCID: PMC1133941
- DOI: 10.1042/BJ20031809
A core catalytic domain of the TyrA protein family: arogenate dehydrogenase from Synechocystis
Abstract
The TyrA protein family includes prephenate dehydrogenases, cyclohexadienyl dehydrogenases and TyrA(a)s (arogenate dehydrogenases). tyrA(a) from Synechocystis sp. PCC 6803, encoding a 30 kDa TyrA(a) protein, was cloned into an overexpression vector in Escherichia coli. TyrA(a) was then purified to apparent homogeneity and characterized. This protein is a model structure for a catalytic core domain in the TyrA superfamily, uncomplicated by allosteric or fused domains. Competitive inhibitors acting at the catalytic core of TyrA proteins are analogues of any accepted cyclohexadienyl substrate. The homodimeric enzyme was specific for L-arogenate (K(m)=331 microM) and NADP+ (K(m)=38 microM), being unable to substitute prephenate or NAD+ respectively. L-Tyrosine was a potent inhibitor of the enzyme (K(i)=70 microM). NADPH had no detectable ability to inhibit the reaction. Although the mechanism is probably steady-state random order, properties of 2',5'-ADP as an inhibitor suggest a high preference for L-arogenate binding first. Comparative enzymology established that both of the arogenate-pathway enzymes, prephenate aminotransferase and TyrA(a), were present in many diverse cyanobacteria and in a variety of eukaryotic red and green algae.
Figures







Similar articles
-
Cyclohexadienyl dehydrogenase from Pseudomonas stutzeri exemplifies a widespread type of tyrosine-pathway dehydrogenase in the TyrA protein family.Comp Biochem Physiol C Toxicol Pharmacol. 2000 Jan;125(1):65-83. doi: 10.1016/s0742-8413(99)00090-0. Comp Biochem Physiol C Toxicol Pharmacol. 2000. PMID: 11790331
-
A monofunctional prephenate dehydrogenase created by cleavage of the 5' 109 bp of the tyrA gene from Erwinia herbicola.J Gen Microbiol. 1992 Jul;138(7):1309-16. doi: 10.1099/00221287-138-7-1309. J Gen Microbiol. 1992. PMID: 1512561
-
Molecular and biochemical characterization of an Arabidopsis thaliana arogenate dehydrogenase with two highly similar and active protein domains.Plant Mol Biol. 2002 Mar;48(4):361-8. doi: 10.1023/a:1014018926676. Plant Mol Biol. 2002. PMID: 11905963
-
Cohesion group approach for evolutionary analysis of TyrA, a protein family with wide-ranging substrate specificities.Microbiol Mol Biol Rev. 2008 Mar;72(1):13-53, table of contents. doi: 10.1128/MMBR.00026-07. Microbiol Mol Biol Rev. 2008. PMID: 18322033 Free PMC article. Review.
-
A primordial bifunctional polyglucan-forming enzyme.Ann N Y Acad Sci. 1973 Feb 9;210:254-64. doi: 10.1111/j.1749-6632.1973.tb47577.x. Ann N Y Acad Sci. 1973. PMID: 4200205 Review. No abstract available.
Cited by
-
The crystal structure of Aquifex aeolicus prephenate dehydrogenase reveals the mode of tyrosine inhibition.J Biol Chem. 2009 May 8;284(19):13223-32. doi: 10.1074/jbc.M806272200. Epub 2009 Mar 10. J Biol Chem. 2009. PMID: 19279014 Free PMC article.
-
Metabolic engineering of Escherichia coli for L-tyrosine production by expression of genes coding for the chorismate mutase domain of the native chorismate mutase-prephenate dehydratase and a cyclohexadienyl dehydrogenase from Zymomonas mobilis.Appl Environ Microbiol. 2008 May;74(10):3284-90. doi: 10.1128/AEM.02456-07. Epub 2008 Mar 14. Appl Environ Microbiol. 2008. PMID: 18344329 Free PMC article.
-
Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803.Biosci Rep. 2020 Apr 30;40(4):BSR20193325. doi: 10.1042/BSR20193325. Biosci Rep. 2020. PMID: 32149336 Free PMC article. Review.
-
Harnessing evolutionary diversification of primary metabolism for plant synthetic biology.J Biol Chem. 2019 Nov 8;294(45):16549-16566. doi: 10.1074/jbc.REV119.006132. Epub 2019 Sep 26. J Biol Chem. 2019. PMID: 31558606 Free PMC article. Review.
-
An Efficient Prephenate Dehydrogenase Gene for the Biosynthesis of L-tyrosine: Gene Mining, Sequence Analysis, and Expression Optimization.Foods. 2023 Aug 17;12(16):3084. doi: 10.3390/foods12163084. Foods. 2023. PMID: 37628083 Free PMC article.
References
-
- Todd A. E., Orengo C. A., Thornton J. M. Evolution of function in protein superfamilies, from a structural perspective. J. Mol. Biol. 2001;307:1113–1143. - PubMed
-
- Teichmann S. A., Rison S. C. G., Thornton J. M., Riley M., Gough J., Clothia C. The evolution and structural anatomy of the small molecule metabolic pathways in Escherichia coli. J. Mol. Biol. 2001;311:693–708. - PubMed
-
- Stenmark S. L., Pierson D. L., Glover G. I., Jensen R. A. Blue–green bacteria synthesize L-tyrosine by the pretyrosine pathway. Nature (London) 1974;247:290–292. - PubMed
-
- Patel N., Pierson D. L., Jensen R. A. Dual enzymatic routes to L-tyrosine and L-phenylalanine via pretyrosine in Pseudomonas aeruginosa. J. Biol. Chem. 1977;252:5839–5846. - PubMed
-
- Zamir L. O., Jensen R. A., Arison B., Douglas A., Albers-Schonberg G., Bowen J. R. Structure of arogenate (pretyrosine), an amino acid intermediate of aromatic biosynthesis. J. Am. Chem. Soc. 1980;102:4499–4504.
Publication types
MeSH terms
Substances
Associated data
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases