Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jun;181(3):459-67.
doi: 10.1677/joe.0.1810459.

Postnatal insulin secretion and sensitivity after manipulation of fetal growth by embryo transfer in the horse

Affiliations

Postnatal insulin secretion and sensitivity after manipulation of fetal growth by embryo transfer in the horse

A J Forhead et al. J Endocrinol. 2004 Jun.

Abstract

This study examined the effects of intrauterine growth on insulin secretion and resistance in newborn foals. Embryo transfer between small pony and large Thoroughbred mares was used to produce four groups of foals with different birth weights (pony in pony n=7; pony in Thoroughbred n=7; Thoroughbred in Thoroughbred n=8; Thoroughbred in pony n=8). On day 2 after birth, glucose (0.5 g/kg) was administered intravenously to the foal and blood samples were taken for 2 h to determine plasma glucose and insulin concentrations. On day 3, insulin sensitivity was assessed by giving insulin (0.75 U/kg i.v.) and measuring the decrement in plasma glucose in the foals. There were no significant differences in insulin secretion, insulin sensitivity or glucose tolerance between the control and growth-retarded Thoroughbred foals. Overgrown pony foals delivered by Thoroughbred mares had higher basal insulin levels and greater beta cell responses to glucose than the other groups of foals. The relationship between plasma glucose and insulin was also significantly steeper in overgrown pony foals than in the other groups. Variations in intrauterine growth rate, therefore, affect postnatal insulin secretion in the horse. More specifically, it is overgrowth, not growth retardation in utero that alters equine beta cell function in the immediate neonatal period.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources