Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Sep 5;267(25):18190-8.

Interaction of Xenopus TFIIIC with the TFIIIA.5 S RNA gene complex

Affiliations
  • PMID: 1517247
Free article

Interaction of Xenopus TFIIIC with the TFIIIA.5 S RNA gene complex

H J Keller et al. J Biol Chem. .
Free article

Abstract

The general transcription factor TFIIIC is necessary for transcription initiation by RNA polymerase III. TFIIIC binds predominantly to the B-Block promoter element, which is present in tRNA genes, several viral RNA genes and repetitive DNA elements, and to the TFIIIA.DNA complex on 5 S RNA genes. Here we report a characterization of Xenopus laevis TFIIIC and its interaction with the TFIIIA.5 S RNA gene complex. A polypeptide with apparent molecular mass of 85 kDa was specifically cross-linked to a B-Block oligonucleotide by UV light. This polypeptide was present in the partially purified TFIIIC fraction and in a complex with a B-Block double-stranded oligonucleotide isolated by nondenaturing gel electrophoresis. TFIIIC.TFIIIA.DNA gel mobility shift complexes were obtained using B-Block DNA affinity-purified TFIIIC and buffer conditions employing low Mg2+ (1 mM) and high dithiothreitol (7 mM) concentrations. Three TFIIIC.TFIIIA.5 S RNA gene complexes were observed by gel mobility shift analysis. One of these complexes was resistant to dissociation by the addition of competing DNA, but the formation of all three complexes was prevented by the inclusion of excess specific competitor DNA in the initial binding reactions. The apparent affinity of TFIIIC for the TFIIIA.5 S DNA complex was 5-fold higher for the somatic-type 5 S RNA gene than for the oocyte-type 5 S RNA gene. Mutations near the 5' boundary of the TFIIIA binding site alter the DNase I footprint of the TFIIIA.DNA complex and reduce the affinity of TFIIIA-mutant 5 S gene complexes for TFIIIC. Differences in TFIIIC affinity for the two classes of 5 S RNA genes may play a role in the developmental regulation of these gene families.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources