Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Jun;4(6):801-12.
doi: 10.1517/14712598.4.6.801.

Biodegradable polyester elastomers in tissue engineering

Affiliations
Review

Biodegradable polyester elastomers in tissue engineering

Antonio R Webb et al. Expert Opin Biol Ther. 2004 Jun.

Abstract

Tissue engineering often makes use of biodegradable scaffolds to guide and promote controlled cellular growth and differentiation in order to generate new tissue. There has been significant research regarding the effects of scaffold surface chemistry and degradation rate on tissue formation and the importance of these parameters is widely recognised. Nevertheless, studies describing the role of mechanical stimuli during tissue development and function suggest that the mechanical properties of the scaffold will also be important. In particular, scaffold mechanics should be taken into account if mechanical stimulation, such as cyclic strain, will be incorporated into strategies to grow improved tissues or the target tissue to be replaced has elastomeric properties. Biodegradable polyesters, such as polyglycolide, polylactide and poly(lactide-co-glycolide), although commonly used in tissue engineering, undergo plastic deformation and failure when exposed to long-term cyclic strain, limiting their use in engineering elastomeric tissues. This review will cover the latest advances in the development of biodegradable polyester elastomers for use as scaffolds to engineer tissues, such as heart valves and blood vessels.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources