Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jun;122(6):1440-7.
doi: 10.1111/j.0022-202X.2004.22620.x.

Ultraviolet a radiation-induced immediate iron release is a key modulator of the activation of NF-kappaB in human skin fibroblasts

Affiliations
Free article

Ultraviolet a radiation-induced immediate iron release is a key modulator of the activation of NF-kappaB in human skin fibroblasts

Olivier Reelfs et al. J Invest Dermatol. 2004 Jun.
Free article

Abstract

Ultraviolet A (UVA, 320-400 nm) radiation, an oxidizing component of sunlight, leads to an immediate increase in the labile iron in human skin fibroblasts. Exposure of skin fibroblasts to UVA radiation is also known to induce nuclear factor-kappaB (NF-kappaB) DNA-binding activity, although the underlying mechanism is unclear. We report here that in skin fibroblasts, the extent of NF-kappaB activation by UVA tightly correlates with the level of "UVA-induced" labile iron release as shown by both iron chelation and iron loading treatments. Furthermore, our data indicate that the slow kinetics of induction of NF-kappaB by UVA relative to other oxidants previously studied is due to a transient increase in permeability of nuclear membrane to proteins and occurs as a result of labile iron-mediated damage to nuclear membrane. Since in addition to iron chelators, lipid peroxidation inhibitors also decrease the UVA-mediated induction of NF-kappaB, we propose that the rapid release of labile iron by UVA might act as a catalyst to exacerbate the generation of lipid secondary messengers in skin cell membranes that are responsible for induction of NF-kappaB. This novel role for iron in amplifying NF-kappaB mobilization in response to UVA-induced oxidative stress aids understanding of its involvement in UV-induced skin inflammation.

PubMed Disclaimer

Comment in

Publication types