Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jun;122(6):1488-94.
doi: 10.1111/j.0022-202X.2004.22606.x.

Treatment with 5-fluorouracil and celecoxib displays synergistic regression of ultraviolet light B-induced skin tumors

Affiliations
Free article

Treatment with 5-fluorouracil and celecoxib displays synergistic regression of ultraviolet light B-induced skin tumors

Traci A Wilgus et al. J Invest Dermatol. 2004 Jun.
Free article

Abstract

Standard chemotherapeutic agents used for the treatment of pre-cancerous skin lesions and non-melanoma skin cancers are not completely effective. Several studies have suggested that repeated inflammatory sunburn reactions, which include the induction of cyclooxygenase-2 (COX-2) and the subsequent production of prostaglandins, play a role in skin cancer development. COX-2 inhibition has been demonstrated to be a potent means of preventing skin cancer development in mice; however, COX-2 inhibitors alone are not effective as chemotherapeutic agents. Data in a variety of cancer types suggest greater efficacy in treating tumors with combination chemotherapies. Therefore, we hypothesized that a combination of the chemotherapeutic agent 5-fluorouracil (5-FU) and the COX-2 inhibitor and anti-inflammatory drug celecoxib would act synergistically to regress tumors in a murine model of ultraviolet light B- (UVB-) induced carcinogenesis. We found that topical treatment with 5-FU and celecoxib together was up to 70% more effective in reducing the number of UVB-induced skin tumors than 5-FU treatment alone. Our data suggest that more effective chemotherapy regimens can be developed to treat the millions of pre-cancerous and cancerous skin lesions that arise every year, which could ultimately lead to a significant reduction in costs and cosmetic defects (scarring) associated with surgical interventions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms