Maximum geometrical hindrance to diffusion in brain extracellular space surrounding uniformly spaced convex cells
- PMID: 15178185
- DOI: 10.1016/j.jtbi.2004.03.003
Maximum geometrical hindrance to diffusion in brain extracellular space surrounding uniformly spaced convex cells
Abstract
Brain extracellular space (ECS) constitutes a porous medium in which diffusion is subject to hindrance, described by tortuosity, lambda = (D/D*)1/2, where D is the free diffusion coefficient and D* is the effective diffusion coefficient in brain. Experiments show that lambda is typically 1.6 in normal brain tissue although variations occur in specialized brain regions. In contrast, different theoretical models of cellular assemblies give ambiguous results: they either predict lambda-values similar to experimental data or indicate values of about 1.2. Here we constructed three different ECS geometries involving tens of thousands of cells and performed Monte Carlo simulation of 3-D diffusion. We conclude that the geometrical hindrance in the ECS surrounding uniformly spaced convex cells is independent of the cell shape and only depends on the volume fraction alpha (the ratio of the ECS volume to the whole tissue volume). This dependence can be described by the relation lambda = ((3-alpha)/2)1/2, indicating that the geometrical hindrance in such ECS cannot account for lambda > 1.225. Reasons for the discrepancy between the theoretical and experimental tortuosity values are discussed.
Copyright 2004 Elsevier Ltd.
Similar articles
-
Cell cavities increase tortuosity in brain extracellular space.J Theor Biol. 2005 Jun 21;234(4):525-36. doi: 10.1016/j.jtbi.2004.12.009. J Theor Biol. 2005. PMID: 15808873
-
Changes in diffusion through the brain extracellular space.Biotechnol Appl Biochem. 2004 Apr;39(Pt 2):223-32. doi: 10.1042/BA20030140. Biotechnol Appl Biochem. 2004. PMID: 15032743
-
Diffusion of molecules in brain extracellular space: theory and experiment.Prog Brain Res. 2000;125:129-54. doi: 10.1016/S0079-6123(00)25007-3. Prog Brain Res. 2000. PMID: 11098654 Review.
-
Diffusion parameters of the extracellular space in human gliomas.Glia. 2003 Apr 1;42(1):77-88. doi: 10.1002/glia.10204. Glia. 2003. PMID: 12594739
-
Extrasynaptic transmission and the diffusion parameters of the extracellular space.Neurochem Int. 2008 Jan;52(1-2):5-13. doi: 10.1016/j.neuint.2007.04.007. Epub 2007 Apr 19. Neurochem Int. 2008. PMID: 17513016 Review.
Cited by
-
Aquaporin-4-deficient mice have increased extracellular space without tortuosity change.J Neurosci. 2008 May 21;28(21):5460-4. doi: 10.1523/JNEUROSCI.0257-08.2008. J Neurosci. 2008. PMID: 18495879 Free PMC article.
-
Multiscale modeling of diffusion in the early Drosophila embryo.Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10092-6. doi: 10.1073/pnas.1001139107. Epub 2010 May 17. Proc Natl Acad Sci U S A. 2010. PMID: 20479267 Free PMC article.
-
Demonstration of Non-Gaussian Restricted Diffusion in Tumor Cells Using Diffusion Time-Dependent Diffusion-Weighted Magnetic Resonance Imaging Contrast.Front Oncol. 2016 Aug 2;6:179. doi: 10.3389/fonc.2016.00179. eCollection 2016. Front Oncol. 2016. PMID: 27532028 Free PMC article.
-
Anomalous extracellular diffusion in rat cerebellum.Biophys J. 2015 May 5;108(9):2384-95. doi: 10.1016/j.bpj.2015.02.034. Biophys J. 2015. PMID: 25954895 Free PMC article.
-
Molecular diffusion model of neurotransmitter homeostasis around synapses supporting gradients.Neural Comput. 2011 Apr;23(4):984-1014. doi: 10.1162/NECO_a_00101. Epub 2011 Jan 11. Neural Comput. 2011. PMID: 21222526 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical