Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Jun 8:4:11.
doi: 10.1186/1471-230X-4-11.

Complete hepatitis B virus genome analysis in HBsAg positive mothers and their infants with fulminant hepatitis B

Affiliations
Comparative Study

Complete hepatitis B virus genome analysis in HBsAg positive mothers and their infants with fulminant hepatitis B

Michael Friedt et al. BMC Gastroenterol. .

Abstract

Background: After perinatal transmission of hepatitis B virus, infants of anti-HBe positive HBsAg carrier mothers may develop fulminant hepatitis B. Previously it has been suggested, that fulminant hepatitis B in adults was associated with specific mutations in the HBV-genome. The aim of this study was to investigate, whether specific viral variants are associated with fulminant hepatitis B in young infants.

Methods: The complete HBV-genomes of five mothers and their infants with fulminant hepatitis were isolated from the sera, amplified and directly sequenced.

Results: Between 6 and 43 base pair exchanges between the HBV genomes of the infants and their mothers were identified. The mutations spread over the entire virus genome. Nucleotide exchanges in the basic core promotor and precore region were identified in all cases. A heterogeneous virus population was detected in four mothers.

Conclusions: Many new mutations were proved to emerge during fulminant hepatitis B in infants, who had been perinatally infected. HBeAg negative variants were the predominant population in all children, whereas these mutants could only be detected as subpopulations in four mothers. The data suggest that the selection of a specific HBeAg negative viral strain may be associated with the development of fulminant hepatitis B in children.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Nucleotide Exchanges between mothers (M1–M5) and their infants (1–5) in comparison with the Reference Sequence. Nucleotide positions are according to the nomenclature of Galibert et al. 1979. Mutations occurring in the HBV genomes of both, mother and child-compared to the reference sequence, are not listed. Nucleotide positions with a heterogeneous HBV population are shown in italics.
Figure 2
Figure 2
Mutations identified in the HBV genomes from mothers and infants are illustrated. (C)The horizontal line represents the HBV nucleotide sequence of the reference genome (11). (A) The four open reading frames (ORF) are depicted in open bars. Lines within these bars represent mutations resulting in amino acid changes in the infant with fulminant disease. (B) Black bars in the middle indicate enhancer and promotor regions (GRE: Glucocorticoid response element, ENH I-XP: enhancer I and X promotor, ENH II-CP: enhancer II and core promotor, ε: pregenome RNA encapsidation signal epsilon, SP I: surface promotor I, SP II: surface promotor II).
Figure 3
Figure 3
Amino acid exchanges between mothers and their infants in comparison to the Reference Sequence. Amino acid positions are numbered from the start codon of each protein. Only amino acid exchanges from mothers (M1–M5) to their infants (1–5) are depicted, the reference sequence according to Galibert et al.(1979) is listed for comparison; a heterogeneous population according to the nucleotide sequence is shown in italics.* = stop ; met = start codon, **aa exchange prevents preS2 production.

Similar articles

Cited by

References

    1. Sato S, Suzuki K, Akahane Y, Akamatsu K, Akiyama K, Yunomura K, Tsuda F, Tanaka T, Okamoto H, Miyakawa Y. Hepatitis B virus strains with mutations in the core promoter in patients with fulminant hepatitis. Ann Intern Med. 1995;122:241–248. - PubMed
    1. Hasegawa K, Huang JK, Wands JR, Obata H, Liang TJ. Association of hepatitis B viral precore mutations with fulminant hepatitis B in Japan. Virology. 1991;185:460–463. doi: 10.1016/0042-6822(91)90799-H. - DOI - PubMed
    1. Liang TJ, Hasegawa K, Rimon N, Wands JR, Ben Porath E. A hepatitis B virus mutant associated with an epidemic of fulminant hepatitis. N Engl J Med. 1991;324:1705–1709. - PubMed
    1. Hasegawa K, Huang J, Rogers SA, Blum HE, Liang TJ. Enhanced replication of a hepatitis B virus mutant associated with an epidemic of fulminant hepatitis. J Virol. 1994;68:1651–1659. - PMC - PubMed
    1. Pollicino T, Zanetti AR, Cacciola I, Petit MA, Smedile A, Campo S, Sagliocca L, Pasquali M, Tanzi E, Longo G, Raimundo G. Pre-S2 defective hepatitis B virus infection in patients with fulminant hepatitis. Hepatology. 1997;26:495–499. - PubMed

Publication types