Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Jun 4;15(3):126-36.
doi: 10.1177/154411130401500302.

Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis

Affiliations
Review

Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis

C Qin et al. Crit Rev Oral Biol Med. .

Abstract

The extracellular matrix (ECM) of bone and dentin contains several non-collagenous proteins. One category of non-collagenous protein is termed the SIBLING (Small Integrin-Binding LIgand, N-linked Glycoprotein) family, that includes osteopontin (OPN), bone sialoprotein (BSP), dentin matrix protein 1 (DMP1), dentin sialophosphoprotein (DSPP), and matrix extracellular phosphoglycoprotein (MEPE). These polyanionic SIBLING proteins are believed to play key biological roles in the mineralization of bone and dentin. Although the specific mechanisms involved in controlling bone and dentin formation are still unknown, it is clear that some functions of the SIBLING family members are dependent on the nature and extent of post-translational modifications (PTMs), such as phosphorylation, glycosylation, and proteolytic processing, since these PTMs would have significant effects on their structure. OPN and BSP are present in the ECM of bone and dentin as full-length forms, whereas amino acid sequencing indicates that DMP1 and DSPP exist as proteolytically processed fragments that result from scission of X-Asp bonds. We hypothesized that the processing of DMP1 and DSPP is catalyzed by the PHEX enzyme, since this protein, an endopeptidase that is predominantly expressed in bone and tooth, has a strong preference for cleavage at the NH2-terminus of aspartyl residue. We envision that the proteolytic processing of DMP1 and DSPP may be an activation process that plays a significant, crucial role in osteogenesis and dentinogenesis, and that a failure in this processing would cause defective mineralization in bone and dentin, as observed in X-linked hypophosphatemic rickets.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources