Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Aug 13;279(33):34603-13.
doi: 10.1074/jbc.M401901200. Epub 2004 Jun 8.

Biochemical and kinetic characterization of the DNA helicase and exonuclease activities of werner syndrome protein

Affiliations
Free article

Biochemical and kinetic characterization of the DNA helicase and exonuclease activities of werner syndrome protein

Saba Choudhary et al. J Biol Chem. .
Free article

Abstract

The WRN gene, defective in the premature aging and genome instability disorder Werner syndrome, encodes a protein with DNA helicase and exonuclease activities. In this report, cofactor requirements for WRN catalytic activities were examined. WRN helicase performed optimally at an equimolar concentration (1 mm) of Mg(2+) and ATP with a K(m) of 140 microm for the ATP-Mg(2+) complex. The initial rate of WRN helicase activity displayed a hyperbolic dependence on ATP-Mg(2+) concentration. Mn(2+) and Ni(2+) substituted for Mg(2+) as a cofactor for WRN helicase, whereas Fe(2+) or Cu(2+) (10 microm) profoundly inhibited WRN unwinding in the presence of Mg(2+).Zn(2+) (100 microm) was preferred over Mg(2+) as a metal cofactor for WRN exonuclease activity and acts as a molecular switch, converting WRN from a helicase to an exonuclease. Zn(2+) strongly stimulated the exonuclease activity of a WRN exonuclease domain fragment, suggesting a Zn(2+) binding site in the WRN exonuclease domain. A fluorometric assay was used to study WRN helicase kinetics. The initial rate of unwinding increased with WRN concentration, indicating that excess enzyme over DNA substrate improved the ability of WRN to unwind the DNA substrate. Under presteady state conditions, the burst amplitude revealed a 1:1 ratio between WRN and DNA substrate, suggesting an active monomeric form of the helicase. These are the first reported kinetic parameters of a human RecQ unwinding reaction based on real time measurements, and they provide mechanistic insights into WRN-catalyzed DNA unwinding.

PubMed Disclaimer

MeSH terms

LinkOut - more resources