Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jun;25(10-11):1592-600.
doi: 10.1002/elps.200305847.

Determination of multiple drugs of abuse in human urine using capillary electrophoresis with fluorescence detection

Affiliations

Determination of multiple drugs of abuse in human urine using capillary electrophoresis with fluorescence detection

Ahmed Alnajjar et al. Electrophoresis. 2004 Jun.

Abstract

Methods for separation and determination of multiple drugs of abuse in biological fluids using capillary electrophoresis (CE) with native fluorescence and laser-induced fluorescence (LIF) detection are described herein. Using native fluorescence, normorphine, morphine, 6-acetyl morphine (6-AM), and codeine were analyzed by CE without any derivatization procedure and detected at an excitation wavelength of 245 nm with a cut-off emission filter of 320 nm, providing a rapid and simple analysis. The detection limits were in the range of 200 ng/mL. For a highly sensitive analysis, LIF detection was also examined using a two-step precolumn derivatization procedure. In this case, drugs extracted from human urine were first subjected to an N-demethylation reaction involving the use of 1-chloroethyl chloroformate (ACE-Cl) and then derivatized using fluorescein isothiocyanate isomer I (FITC) and analyzed by CE coupled to a LIF detector. Variables affecting this derivatization: yield of demethylation reaction, FITC concentration, reaction time and temperature, were studied. The estimated instrumental detection limits of the FITC derivatives were in the range of 50-100 pg/mL, using LIF detection with excitation and emission wavelengths of 488 nm and 520 nm, respectively. The linearity, reproducibility and reliability of the methods were evaluated. In addition, a comparison of the characteristics for both native fluorescence and LIF detections was also discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources