Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2004 Jun;51(6):985-92.
doi: 10.1109/TBME.2004.827078.

Brain-computer interface design for asynchronous control applications: improvements to the LF-ASD asynchronous brain switch

Affiliations
Clinical Trial

Brain-computer interface design for asynchronous control applications: improvements to the LF-ASD asynchronous brain switch

Jaimie F Borisoff et al. IEEE Trans Biomed Eng. 2004 Jun.

Abstract

The low-frequency asynchronous switch design (LF-ASD) was introduced as a direct brain-computer interface (BCI) technology for asynchronous control applications. The LF-ASD operates as an asynchronous brain switch (ABS) which is activated only when a user intends control and maintains an inactive state output when the user is not meaning to control the device (i.e., they may be idle, thinking about a problem, or performing some other action). Results from LF-ASD evaluations have shown promise, although the reported error rates are too high for most practical applications. This paper presents the evaluation of four new LF-ASD designs with data collected from individuals with high-level spinal cord injuries and able-bodied subjects. These new designs incorporated electroencephalographic energy normalization and feature space dimensionality reduction. The error characteristics of the new ABS designs were significantly better than the LF-ASD design with true positive rate increases of approximately 33% for false positive rates in the range of 1%-2%. The results demonstrate that the dimensionality of the LF-ASD feature space can be reduced without performance degradation. The results also confirm previous findings that spinal cord-injured subjects can operate ABS designs to the same ability as able-bodied subjects.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources