Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2004 Jun;51(6):993-1002.
doi: 10.1109/TBME.2004.827088.

Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms

Affiliations
Clinical Trial

Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms

Guido Dornhege et al. IEEE Trans Biomed Eng. 2004 Jun.

Abstract

Noninvasive electroencephalogram (EEG) recordings provide for easy and safe access to human neocortical processes which can be exploited for a brain-computer interface (BCI). At present, however, the use of BCIs is severely limited by low bit-transfer rates. We systematically analyze and develop two recent concepts, both capable of enhancing the information gain from multichannel scalp EEG recordings: 1) the combination of classifiers, each specifically tailored for different physiological phenomena, e.g., slow cortical potential shifts, such as the pre-movement Bereitschaftspotential or differences in spatio-spectral distributions of brain activity (i.e., focal event-related desynchronizations) and 2) behavioral paradigms inducing the subjects to generate one out of several brain states (multiclass approach) which all bare a distinctive spatio-temporal signature well discriminable in the standard scalp EEG. We derive information-theoretic predictions and demonstrate their relevance in experimental data. We will show that a suitably arranged interaction between these concepts can significantly boost BCI performances.

PubMed Disclaimer

MeSH terms

LinkOut - more resources