Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Apr;77(3):281-91.
doi: 10.1023/a:1002443012525.

Adaptation of methane formation and enzyme contents during growth of Methanobacterium thermoautotrophicum (strain deltaH) in a fed-batch fermentor

Affiliations

Adaptation of methane formation and enzyme contents during growth of Methanobacterium thermoautotrophicum (strain deltaH) in a fed-batch fermentor

J L Pennings et al. Antonie Van Leeuwenhoek. 2000 Apr.

Abstract

During growth of Methanobacterium thermoautotrophicum in a fed-batch fermentor, the cells are confronted with a steady decrease in the concentration of the hydrogen energy supply. In order to investigate how the organism responds to these changes, cells collected during different growth phases were examined for their methanogenic properties. Cellular levels of the various methanogenic isoenzymes and functionally equivalent enzymes were also determined. Cells were found to maintain the rates of methanogenesis by lowering their affinity for hydrogen: the apparent Km(H2) decreased in going from the exponential to the stationary phase. Simultaneously, the maximal specific methane production rate changed. Levels of H2-dependent methenyl-tetrahydromethanopterin dehydrogenase (H2-MDH) and methyl coenzyme M reductase isoenzyme II (MCR II) decreased upon entry of the stationary phase. Cells grown under conditions that favored MCR II expression had higher levels of MCR II and H2-MDH, whereas in cells grown under conditions favoring MCR I, levels of MCR II were much lower and the cells had an increased affinity for hydrogen throughout the growth cycle. The use of thiosulfate as a medium reductant was found to have a negative effect on levels of MCR II and H2-MDH. From these results it was concluded that M. thermoautotrophicum responds to variations in hydrogen availability and other environmental conditions (pH, growth temperature, medium reductant) by altering its physiology. The adaptation includes, among others, the differential expression of the MDH and MCR isoenzymes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources