Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jun 17;47(13):3388-98.
doi: 10.1021/jm030646c.

Structure-activity relationships at monoamine transporters for a series of N-substituted 3alpha-(bis[4-fluorophenyl]methoxy)tropanes: comparative molecular field analysis, synthesis, and pharmacological evaluation

Affiliations

Structure-activity relationships at monoamine transporters for a series of N-substituted 3alpha-(bis[4-fluorophenyl]methoxy)tropanes: comparative molecular field analysis, synthesis, and pharmacological evaluation

Santosh S Kulkarni et al. J Med Chem. .

Abstract

The development of structure-activity relationships (SAR) with divergent classes of monoamine transporter ligands and comparison of their effects in animal models of cocaine abuse have provided insight into the complex relationship among structure, binding profiles, and behavioral activity. Many 3alpha-(diphenylmethoxy)tropane (benztropine) analogues are potent dopamine uptake inhibitors but exhibit behavioral profiles that differ from those of cocaine and other compounds in this class. One of the most potent and dopamine transporter (DAT) selective N-substituted benztropine analogues (N-(4-phenyl-n-butyl)-3alpha-(bis[4-fluorophenyl]methoxy)tropane, 1c) is devoid of cocaine-like behaviors in rodent models but is also highly lipophilic (cLogD = 5.01), which compromises its water solubility and may adversely affect its pharmacokinetic properties. To further explore the SAR in this series and ultimately to design dopamine uptake inhibitors with favorable lipophilicities for drug development, a comparative molecular field analysis (CoMFA) was performed on a set of benztropine analogues previously synthesized in our laboratory. The CoMFA field analysis on the statistically significant (r2(cv) = 0.632; r2(ncv) = 0.917) models provided valuable insight into the structural features required for optimal binding to the DAT, which was used to design a series of novel benztropine analogues with heteroatom substitutions at the tropane N-8. These compounds were evaluated for binding at DAT, serotonin (SERT) and norepinephrine (NET) transporters, and muscarinic M1 receptors in rat brain. Inhibition of [3H]DA uptake in synaptosomes was also evaluated. Most of the analogues showed high DAT affinity (12-50 nM), selectivity (10- to 120-fold), potent inhibition of dopamine uptake, and lower lipophilicities as predicted by cLogD values.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources