Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004:73:991-1018.
doi: 10.1146/annurev.biochem.73.011303.073711.

Structural aspects of ligand binding to and electron transfer in bacterial and fungal P450s

Affiliations
Review

Structural aspects of ligand binding to and electron transfer in bacterial and fungal P450s

Olena Pylypenko et al. Annu Rev Biochem. 2004.

Abstract

Cytochrome P450 enzymes are heme-containing monooxygenases that are named after an absorption band at 450 nm when complexed with carbon monoxide. They catalyze a wide variety of reactions and are unique in their ability to hydroxylate nonactivated hydrocarbons. P450 enzymes are involved in numerous biological processes, which include the biosynthesis of lipids, steroids, antibiotics, and the degradation of xenobiotics. In line with the variety of reactions catalyzed, the size of their substrates varies significantly. Some P450s have open active sites (e.g., BM3), and some have shielded active sites that open only transiently (e.g., P450cam), whereas others bind the substrate only when attached to carrier proteins (e.g., Oxy proteins). Structural aspects of both organic and gaseous ligand binding and electron transfer are described.

PubMed Disclaimer

MeSH terms

LinkOut - more resources