Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jun;89(6):1417-26.
doi: 10.1111/j.1471-4159.2004.02438.x.

Mitochondria dysfunction of Alzheimer's disease cybrids enhances Abeta toxicity

Affiliations

Mitochondria dysfunction of Alzheimer's disease cybrids enhances Abeta toxicity

Sandra M Cardoso et al. J Neurochem. 2004 Jun.

Abstract

Alzheimer's disease (AD) brain reveals high rates of oxygen consumption and oxidative stress, altered antioxidant defences, increased oxidized polyunsaturated fatty acids, and elevated transition metal ions. Mitochondrial dysfunction in AD is perhaps relevant to these observations, as such may contribute to neurodegenerative cell death through the formation of reactive oxygen species (ROS) and the release of molecules that initiate programmed cell death pathways. In this study, we analyzed the effects of beta-amyloid peptide (Abeta) on human teratocarcinoma (NT2) cells expressing endogenous mitochondrial DNA (mtDNA), mtDNA from AD subjects (AD cybrids), and mtDNA from age-matched control subjects (control cybrids). In addition to finding reduced cytochrome oxidase activity, elevated ROS, and reduced ATP levels in the AD cybrids, when these cell lines were exposed to Abeta 1-40 we observed excessive mitochondrial membrane potential depolarization, increased cytoplasmic cytochrome c, and elevated caspase-3 activity. When exposed to Abeta, events associated with programmed cell death are activated in AD NT2 cybrids to a greater extent than they are in control cybrids or the native NT2 cell line, suggesting a role for mtDNA-derived mitochondrial dysfunction in AD degeneration.

PubMed Disclaimer

Publication types

MeSH terms