Bayesian integration in force estimation
- PMID: 15190091
- DOI: 10.1152/jn.00275.2004
Bayesian integration in force estimation
Abstract
When we interact with objects in the world, the forces we exert are finely tuned to the dynamics of the situation. As our sensors do not provide perfect knowledge about the environment, a key problem is how to estimate the appropriate forces. Two sources of information can be used to generate such an estimate: sensory inputs about the object and knowledge about previously experienced objects, termed prior information. Bayesian integration defines the way in which these two sources of information should be combined to produce an optimal estimate. To investigate whether subjects use such a strategy in force estimation, we designed a novel sensorimotor estimation task. We controlled the distribution of forces experienced over the course of an experiment thereby defining the prior. We show that subjects integrate sensory information with their prior experience to generate an estimate. Moreover, subjects could learn different prior distributions. These results suggest that the CNS uses Bayesian models when estimating force requirements.
Similar articles
-
Probabilistic mechanisms in sensorimotor control.Novartis Found Symp. 2006;270:191-8; discussion 198-202, 232-7. Novartis Found Symp. 2006. PMID: 16649715 Review.
-
Testing Bayesian models of human coincidence timing.J Neurophysiol. 2005 Jul;94(1):395-9. doi: 10.1152/jn.01168.2004. Epub 2005 Feb 16. J Neurophysiol. 2005. PMID: 15716368
-
Bayesian integration in sensorimotor learning.Nature. 2004 Jan 15;427(6971):244-7. doi: 10.1038/nature02169. Nature. 2004. PMID: 14724638
-
Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.Brain Res Bull. 2006 Dec 11;71(1-3):101-10. doi: 10.1016/j.brainresbull.2006.08.007. Epub 2006 Sep 1. Brain Res Bull. 2006. PMID: 17113935
-
Probabilistic models in human sensorimotor control.Hum Mov Sci. 2007 Aug;26(4):511-24. doi: 10.1016/j.humov.2007.05.005. Epub 2007 Jul 12. Hum Mov Sci. 2007. PMID: 17628731 Free PMC article. Review.
Cited by
-
Iterative Bayesian estimation as an explanation for range and regression effects: a study on human path integration.J Neurosci. 2011 Nov 23;31(47):17220-9. doi: 10.1523/JNEUROSCI.2028-11.2011. J Neurosci. 2011. PMID: 22114288 Free PMC article.
-
Does the sensorimotor system minimize prediction error or select the most likely prediction during object lifting?J Neurophysiol. 2017 Jan 1;117(1):260-274. doi: 10.1152/jn.00609.2016. Epub 2016 Oct 19. J Neurophysiol. 2017. PMID: 27760821 Free PMC article.
-
Acquisition of multiple prior distributions in tactile temporal order judgment.Front Psychol. 2012 Aug 14;3:276. doi: 10.3389/fpsyg.2012.00276. eCollection 2012. Front Psychol. 2012. PMID: 22912622 Free PMC article.
-
Computational characterization of visually induced auditory spatial adaptation.Front Integr Neurosci. 2011 Nov 4;5:75. doi: 10.3389/fnint.2011.00075. eCollection 2011. Front Integr Neurosci. 2011. PMID: 22069383 Free PMC article.
-
Maintaining rotational equilibrium during object manipulation: linear behavior of a highly non-linear system.Exp Brain Res. 2006 Mar;169(4):519-31. doi: 10.1007/s00221-005-0166-z. Epub 2005 Nov 17. Exp Brain Res. 2006. PMID: 16328302 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials