Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb;36(1):1-10.
doi: 10.3758/bf03195544.

Assessing the informational value of parameter estimates in cognitive models

Affiliations

Assessing the informational value of parameter estimates in cognitive models

Tom Verguts et al. Behav Res Methods Instrum Comput. 2004 Feb.

Abstract

Mathematical models of cognition often contain unknown parameters whose values are estimated from the data. A question that generally receives little attention is how informative such estimates are. In a maximum likelihood framework, standard errors provide a measure of informativeness. Here, a standard error is interpreted as the standard deviation of the distribution of parameter estimates over multiple samples. A drawback to this interpretation is that the assumptions that are required for the maximum likelihood framework are very difficult to test and are not always met. However, at least in the cognitive science community, it appears to be not well known that standard error calculation also yields interpretable intervals outside the typical maximum likelihood framework. We describe and motivate this procedure and, in combination with graphical methods, apply it to two recent models of categorization: ALCOVE (Kruschke, 1992) and the exemplar-based random walk model (Nosofsky & Palmeri, 1997). The applications reveal aspects of these models that were not hitherto known and bring a mix of bad and good news concerning estimation of these models.

PubMed Disclaimer

Similar articles

Cited by