Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul;64(1):18-24.
doi: 10.1111/j.1399-0039.2004.00260.x.

Chagas' disease susceptibility/resistance: linkage disequilibrium analysis suggests epistasis between major histocompatibility complex and interleukin-10

Affiliations

Chagas' disease susceptibility/resistance: linkage disequilibrium analysis suggests epistasis between major histocompatibility complex and interleukin-10

M Moreno et al. Tissue Antigens. 2004 Jul.

Abstract

Association between the major histocompatibility complex (MHC) and the susceptibility/resistance to acquire Chagas' disease has been largely demonstrated. To study the role of candidate genes in this susceptibility/resistance to Chagas, we designed a population-genetic-based case-control approach (chagasic n = 104 and controls n = 60) and tested the presence of genotype and linkage disequilibrium on microsatellite loci establishing specific landmarks for the MHC, interleukin (IL)-2, IL-2Rbeta chain, IL-4, IL-10, and natural resistance-associated mactophage protein 1 (NRAMP1). After demonstrating no genetic stratification among cases and controls (F(st) were not different from 0), we found significant allelic differences among chagasic patients and controls at microsatellite locus D6S291 (MHC) and at the microsatellite pointing out the IL-10. At the MHC, we found significant differences between patients and controls in Hardy-Weinberg equilibrium-expected genotype proportions. Additionally, MHC II-locus-inferred haplotypes in chagasic patients exhibited strong significant departures from the expected proportions predicted by the second Mendelian law. The linkage disequilibrium pattern at MHC involves a region of approximately 10 cM. These results replicate previous analyses and suggest that presence of epistasis between MHC with humoral systems, such as IL-10, could be underlying the susceptibility/resistance to Chagas' disease.

PubMed Disclaimer

Similar articles

Cited by

Publication types