Protection against lethal vaccinia virus challenge in HLA-A2 transgenic mice by immunization with a single CD8+ T-cell peptide epitope of vaccinia and variola viruses
- PMID: 15194781
- PMCID: PMC421672
- DOI: 10.1128/JVI.78.13.7052-7060.2004
Protection against lethal vaccinia virus challenge in HLA-A2 transgenic mice by immunization with a single CD8+ T-cell peptide epitope of vaccinia and variola viruses
Abstract
CD8(+) T lymphocytes have been shown to be involved in controlling poxvirus infection, but no protective cytotoxic T-lymphocyte (CTL) epitopes are defined for variola virus, the causative agent of smallpox, or for vaccinia virus. Of several peptides in vaccinia virus predicted to bind HLA-A2.1, three, VETFsm(498-506), A26L(6-14), and HRP2(74-82), were found to bind HLA-A2.1. Splenocytes from HLA-A2.1 transgenic mice immunized with vaccinia virus responded only to HRP2(74-82) at 1 week and to all three epitopes by ex vivo enzyme-linked immunosorbent spot (ELISPOT) assay at 4 weeks postimmunization. To determine if these epitopes could elicit a protective CD8(+) T-cell response, we challenged peptide-immunized HLA-A2.1 transgenic mice intranasally with a lethal dose of the WR strain of vaccinia virus. HRP2(74-82) peptide-immunized mice recovered from infection, while naïve mice died. Depletion of CD8(+) T cells eliminated protection. Protection of HHD-2 mice, lacking mouse class I major histocompatibility complex molecules, implicates CTLs restricted by human HLA-A2.1 as mediators of protection. These results suggest that HRP2(74-82), which is shared between vaccinia and variola viruses, may be a CD8(+) T-cell epitope of vaccinia virus that will provide cross-protection against smallpox in HLA-A2.1-positive individuals, representing almost half the population.
Figures






Similar articles
-
Identification of vaccinia CD8+ T-cell epitopes conserved among vaccinia and variola viruses restricted by common MHC class I molecules, HLA-A2 or HLA-B7.Hum Immunol. 2006 Jul;67(7):512-20. doi: 10.1016/j.humimm.2005.12.004. Epub 2006 May 4. Hum Immunol. 2006. PMID: 16829305
-
Identification of vaccinia virus epitope-specific HLA-A*0201-restricted T cells and comparative analysis of smallpox vaccines.Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):217-22. doi: 10.1073/pnas.262668999. Epub 2002 Dec 23. Proc Natl Acad Sci U S A. 2003. PMID: 12518065 Free PMC article.
-
HLA-A2-restricted human CD8(+) cytotoxic T lymphocyte responses to a novel epitope in vaccinia virus that is conserved among orthopox viruses.J Infect Dis. 2006 Jul 15;194(2):168-75. doi: 10.1086/505224. Epub 2006 Jun 12. J Infect Dis. 2006. PMID: 16779722
-
T-Cell epitope discovery for variola and vaccinia viruses.Rev Med Virol. 2007 Mar-Apr;17(2):93-113. doi: 10.1002/rmv.527. Rev Med Virol. 2007. PMID: 17195963 Review.
-
The immunology of smallpox vaccines.Curr Opin Immunol. 2009 Jun;21(3):314-20. doi: 10.1016/j.coi.2009.04.004. Epub 2009 Jun 11. Curr Opin Immunol. 2009. PMID: 19524427 Free PMC article. Review.
Cited by
-
Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge.Vaccine. 2007 Feb 26;25(10):1814-23. doi: 10.1016/j.vaccine.2006.11.017. Epub 2006 Nov 27. Vaccine. 2007. PMID: 17240007 Free PMC article.
-
Orthopoxvirus-Specific T-Cell Responses in Convalescent Mpox Patients.J Infect Dis. 2024 Jan 12;229(1):54-58. doi: 10.1093/infdis/jiad245. J Infect Dis. 2024. PMID: 37380166 Free PMC article.
-
Vaccinia virus-specific CD8(+) T-cell responses target a group of epitopes without a strong immunodominance hierarchy in humans.Hum Immunol. 2008 Dec;69(12):815-25. doi: 10.1016/j.humimm.2008.09.009. Epub 2008 Oct 26. Hum Immunol. 2008. PMID: 18955096 Free PMC article.
-
Long term recall of memory CD8 T cells in mice to first and third generation smallpox vaccines.Vaccine. 2011 Feb 11;29(8):1666-76. doi: 10.1016/j.vaccine.2010.12.036. Epub 2010 Dec 31. Vaccine. 2011. PMID: 21195803 Free PMC article.
-
VennVax, a DNA-prime, peptide-boost multi-T-cell epitope poxvirus vaccine, induces protective immunity against vaccinia infection by T cell response alone.Vaccine. 2011 Jan 10;29(3):501-11. doi: 10.1016/j.vaccine.2010.10.064. Epub 2010 Nov 4. Vaccine. 2011. PMID: 21055490 Free PMC article.
References
-
- Ahlers, J. D., I. M. Belyakov, and J. A. Berzofsky. 2003. Cytokine, chemokine and costimulatory molecule modulation to enhance efficacy of HIV vaccines. Curr. Mol. Med. 3:285-301. - PubMed
-
- Ahlers, J. D., I. M. Belyakov, S. Matsui, and J. A. Berzofsky. 2001. Mechanisms of cytokine synergy essential for vaccine protection against viral challenge. Int. Immunol. 13:897-908. - PubMed
-
- Ahlers, J. D., N. Dunlop, D. W. Alling, P. L. Nara, and J. A. Berzofsky. 1997. Cytokine-in-adjuvant steering of the immune response phenotype to HIV-1 vaccine constructs: GM-CSF and TNFα synergize with IL-12 to enhance induction of CTL. J. Immunol. 158:3947-3958. - PubMed
-
- Antoine, G., F. Scheiflinger, F. Dorner, and F. G. Falkner. 1998. The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244:365-396. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials