Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Jul 2;1013(1):13-29.
doi: 10.1016/j.brainres.2004.03.063.

Localization of mRNAs encoding alpha and beta subunits of soluble guanylyl cyclase in the brain of rainbow trout: comparison with the distribution of neuronal nitric oxide synthase

Affiliations
Comparative Study

Localization of mRNAs encoding alpha and beta subunits of soluble guanylyl cyclase in the brain of rainbow trout: comparison with the distribution of neuronal nitric oxide synthase

Hironori Ando et al. Brain Res. .

Abstract

Detailed distribution of mRNAs encoding alpha and beta subunits of soluble guanylyl cyclase (sGC) was examined in the brain of rainbow trout by in situ hybridization. In addition, distribution of nitric oxide synthase (NOS) was mapped in adjacent parallel sections by neuronal NOS (nNOS) immunocytochemistry and NADPH-diaphorase (NADPHd) histochemistry. Following application of digoxigenin-labeled riboprobes for sGC alpha and beta subunit mRNAs, we found comparatively intense hybridization signals in the telencephalon, preoptic area, thalamus, hypothalamus, pretectum and tegmentum. Both nNOS immunocytochemistry and NADPHd histochemistry showed extensive distribution of nitroxergic neurons in various brain areas, although various degrees of dissociation of nNOS immunoreactivity (ir) and NADPHd staining were detected. In comparison with sGC subunit mRNAs, nNOS signals were more widely distributed in many neurons, including parvocellular neurons in the preoptic area, nucleus anterior tuberis in the hypothalamus, periventricular neurons in the optic tectum, most of the rhombencephalic neurons and pituitary cells. However, wide overlaps of sGC mRNA-containing neurons and nNOS-positive neurons were observed in the olfactory bulb, telencephalon, preoptic area, thalamus, hypothalamus, pretectum, optic tectum, tegmentum and cerebellum. The widespread overlapping in sGC subunit mRNAs and nNOS distribution suggests a role for sGC in various neuronal functions, such as processing of olfactory and visual signals and neuroendocrine function, possibly via NO/cGMP signaling in the brain of rainbow trout.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources