Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity
- PMID: 15199139
- PMCID: PMC480894
- DOI: 10.1128/MCB.24.13.5835-5843.2004
Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity
Erratum in
-
Correction for Danovi et al., "Amplification of Mdmx (or Mdm4) Directly Contributes to Tumor Formation by Inhibiting p53 Tumor Suppressor Activity".Mol Cell Biol. 2019 Jul 16;39(15):e00150-19. doi: 10.1128/MCB.00150-19. Print 2019 Aug 1. Mol Cell Biol. 2019. PMID: 31311845 Free PMC article. No abstract available.
Abstract
Human tumors are believed to harbor a disabled p53 tumor suppressor pathway, either through direct mutation of the p53 gene or through aberrant expression of proteins acting in the p53 pathway, such as p14(ARF) or Mdm2. A role for Mdmx (or Mdm4) as a key negative regulator of p53 function in vivo has been established. However, a direct contribution of Mdmx to tumor formation remains to be demonstrated. Here we show that retrovirus-mediated Mdmx overexpression allows primary mouse embryonic fibroblast immortalization and leads to neoplastic transformation in combination with HRas(V12). Furthermore, the human Mdmx ortholog, Hdmx, was found to be overexpressed in a significant percentage of various human tumors and amplified in 5% of primary breast tumors, all of which retained wild-type p53. Hdmx was also amplified and highly expressed in MCF-7, a breast cancer cell line harboring wild-type p53, and interfering RNA-mediated reduction of Hdmx markedly inhibited the growth potential of these cells in a p53-dependent manner. Together, these results make Hdmx a new putative drug target for cancer therapy.
Figures






Similar articles
-
Alterations in gene expression and sensitivity to genotoxic stress following HdmX or Hdm2 knockdown in human tumor cells harboring wild-type p53.Aging (Albany NY). 2009 Jan;1(1):89-108. doi: 10.18632/aging.100008. Aging (Albany NY). 2009. PMID: 19946469 Free PMC article.
-
Estrogen receptor alpha (ERα/ESR1) mediates the p53-independent overexpression of MDM4/MDMX and MDM2 in human breast cancer.Oncotarget. 2016 Mar 29;7(13):16049-69. doi: 10.18632/oncotarget.7533. Oncotarget. 2016. PMID: 26909605 Free PMC article.
-
Targeting Mdmx to treat breast cancers with wild-type p53.Cell Death Dis. 2015 Jul 16;6(7):e1821. doi: 10.1038/cddis.2015.173. Cell Death Dis. 2015. PMID: 26181202 Free PMC article.
-
MDMX: from bench to bedside.J Cell Sci. 2007 Feb 1;120(Pt 3):371-8. doi: 10.1242/jcs.03362. J Cell Sci. 2007. PMID: 17251377 Review.
-
HDM2 and HDMX Proteins in Human Cancer.Klin Onkol. 2018 Winter;31(Suppl 2):63-70. doi: 10.14735/amko20182S63. Klin Onkol. 2018. PMID: 31023026 Review. English.
Cited by
-
XI-006 induces potent p53-independent apoptosis in Ewing sarcoma.Sci Rep. 2015 Jun 22;5:11465. doi: 10.1038/srep11465. Sci Rep. 2015. PMID: 26095524 Free PMC article.
-
Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization.Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11788-93. doi: 10.1073/pnas.1203789109. Epub 2012 Jun 28. Proc Natl Acad Sci U S A. 2012. PMID: 22745160 Free PMC article.
-
Differences in the transactivation domains of p53 family members: a computational study.BMC Genomics. 2010 Feb 10;11 Suppl 1(Suppl 1):S5. doi: 10.1186/1471-2164-11-S1-S5. BMC Genomics. 2010. PMID: 20158876 Free PMC article.
-
Transcriptomics-Based Investigation of Molecular Mechanisms Underlying Apoptosis Induced by ZnO Nanoparticles in Human Diffuse Large B-Cell Lymphoma.Int J Nanomedicine. 2022 May 18;17:2261-2281. doi: 10.2147/IJN.S355408. eCollection 2022. Int J Nanomedicine. 2022. PMID: 35611214 Free PMC article.
-
Inhibition of p53 DNA binding function by the MDM2 protein acidic domain.J Biol Chem. 2011 May 6;286(18):16018-29. doi: 10.1074/jbc.M111.228981. Epub 2011 Mar 17. J Biol Chem. 2011. PMID: 21454483 Free PMC article.
References
-
- Barlev, N. A., L. Liu, N. H. Chehab, K. Mansfield, K. G. Harris, T. D. Halazonetis, and S. L. Berger. 2001. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol. Cell 8:1243-1254. - PubMed
-
- Bottger, V., A., Bottger, C., Garcia-Echeverria, Y. F., Ramos, A. J. van der Eb, A. G. Jochemsen, and D. P. Lane. 1999. Comparative study of the p53-mdm2 and p53-MDMX interfaces. Oncogene 18:189-199. - PubMed
-
- Boyd, S. D., K. Y. Tsai, and T. Jacks. 2000. An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nat. Cell Biol. 2:563-568. - PubMed
-
- Brummelkamp, T. R., R. Bernards, and R. Agami. 2002. A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550-553. - PubMed
-
- Colombo, E., J. C. Marine, D. Danovi, B. Falini, and P. G. Pelicci. 2002. Nucleophosmin regulates the stability and transcriptional activity of p53. Nat. Cell Biol. 4:529-533. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous