Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Jun;29(3):308-29.
doi: 10.1139/h04-021.

The sarcoplasmic reticulum in muscle fatigue and disease: role of the sarco(endo)plasmic reticulum Ca2+-ATPase

Affiliations
Review

The sarcoplasmic reticulum in muscle fatigue and disease: role of the sarco(endo)plasmic reticulum Ca2+-ATPase

A Russell Tupling. Can J Appl Physiol. 2004 Jun.

Abstract

Skeletal muscles induced to contract repeatedly respond with a progressive loss in their ability to generate a target force or power. This condition is known simply as fatigue. Commonly, fatigue may persist for prolonged periods of time, particularly at low activation frequencies, which is called low-frequency fatigue. Failure to activate the contractile apparatus with the appropriate intracellular free calcium ([Ca2+]f) signal contributes to fatigue but the precise mechanisms involved are unknown. The sarcoplasmic reticulum (SR) is the major organelle in muscle that is responsible for the regulation of [Ca2+]f, and numerous studies have shown that SR function, both Ca2+ release and Ca2+ uptake, is impaired following fatiguing contractile activity. The major aim of this review is to provide insight into the various cellular mechanisms underlying the alterations in SR Ca2+ cycling and cytosolic [Ca2+]f that are associated both with the development of fatigue during repeated muscle contraction and with low-frequency or long-lasting fatigue. The primary focus will be on the role of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) in normal muscle function, fatigue, and disease.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources