Molecular and integrated biology of thin filament protein phosphorylation in heart muscle
- PMID: 15201148
- DOI: 10.1196/annals.1302.004
Molecular and integrated biology of thin filament protein phosphorylation in heart muscle
Abstract
An increasing body of evidence points to posttranslational modifications of the thin filament regulatory proteins, cardiac troponin T (cTnT) and cardiac troponin I (cTnI) by protein kinase C (PKC) phosphorylation as important in both long- and short-term regulation of cardiac function and potentially implicated in the transition between compensated hypertrophy and decompensation. The main sites for PKC-dependent phosphorylation on cTnI are Ser43, Ser45, and Thr144 and on cTnT are Thr197, Ser201, Thr206, and Thr287 (mouse sequence). We analyzed the function of each phosphorylation residue using a phosphorylation mimic approach introducing glutamates (E) at PKC phosphorylation sites and then measuring the isometric tension of fiber bundles exchanged with these mutants. We also directly phosphorylated cTnI and cTnT by PKC, incorporated the phosphorylated troponins in the myofilament lattice, and determined the isometric tension at varying Ca(2+) concentrations. We followed the experimental data with computational analysis prediction of helical content of cTnI and cTnT peptides that undergo phosphorylation. Here we summarize our recent data on the specific functional role of PKC phosphorylation sites of cTnI and cTnT.
Similar articles
-
PKC-betaII sensitizes cardiac myofilaments to Ca2+ by phosphorylating troponin I on threonine-144.J Mol Cell Cardiol. 2006 Nov;41(5):823-33. doi: 10.1016/j.yjmcc.2006.08.016. Epub 2006 Sep 29. J Mol Cell Cardiol. 2006. PMID: 17010989
-
Identification of a functionally critical protein kinase C phosphorylation residue of cardiac troponin T.J Biol Chem. 2003 Sep 12;278(37):35135-44. doi: 10.1074/jbc.M306325200. Epub 2003 Jun 28. J Biol Chem. 2003. PMID: 12832403
-
Functional effects of rho-kinase-dependent phosphorylation of specific sites on cardiac troponin.Circ Res. 2005 Apr 15;96(7):740-7. doi: 10.1161/01.RES.0000162457.56568.7d. Epub 2005 Mar 17. Circ Res. 2005. PMID: 15774859
-
Posttranslational modifications of cardiac troponin T: an overview.J Mol Cell Cardiol. 2013 Oct;63:47-56. doi: 10.1016/j.yjmcc.2013.07.004. Epub 2013 Jul 18. J Mol Cell Cardiol. 2013. PMID: 23871791 Review.
-
Regulation of cardiac contractile function by troponin I phosphorylation.Cardiovasc Res. 2005 Apr 1;66(1):12-21. doi: 10.1016/j.cardiores.2004.12.022. Cardiovasc Res. 2005. PMID: 15769444 Review.
Cited by
-
N-terminal phosphorylation of cardiac troponin-I reduces length-dependent calcium sensitivity of contraction in cardiac muscle.J Physiol. 2013 Jan 15;591(2):475-90. doi: 10.1113/jphysiol.2012.241604. Epub 2012 Nov 5. J Physiol. 2013. PMID: 23129792 Free PMC article.
-
TNNI3K, a cardiac-specific kinase, promotes physiological cardiac hypertrophy in transgenic mice.PLoS One. 2013;8(3):e58570. doi: 10.1371/journal.pone.0058570. Epub 2013 Mar 5. PLoS One. 2013. PMID: 23472207 Free PMC article.
-
Functional consequences of sarcomeric protein abnormalities in failing myocardium.Heart Fail Rev. 2005 Sep;10(3):249-57. doi: 10.1007/s10741-005-5254-4. Heart Fail Rev. 2005. PMID: 16416047 Review.
-
Global comparison of phosphoproteins in human and rodent hearts: implications for translational studies of myosin light chain and troponin phosphorylations.Springerplus. 2016 Jun 21;5(1):808. doi: 10.1186/s40064-016-2469-x. eCollection 2016. Springerplus. 2016. PMID: 27390648 Free PMC article.
-
Myofilament incorporation and contractile function after gene transfer of cardiac troponin I Ser43/45Ala.Arch Biochem Biophys. 2013 Jul 1;535(1):49-55. doi: 10.1016/j.abb.2012.12.021. Epub 2013 Jan 11. Arch Biochem Biophys. 2013. PMID: 23318976 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous