Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Aug 27;279(35):36372-81.
doi: 10.1074/jbc.M403096200. Epub 2004 Jun 16.

Molecular basis of the differential sensitivity of nematode and mammalian muscle to the anthelmintic agent levamisole

Affiliations
Free article

Molecular basis of the differential sensitivity of nematode and mammalian muscle to the anthelmintic agent levamisole

Diego Rayes et al. J Biol Chem. .
Free article

Abstract

Levamisole is an anthelmintic agent that exerts its therapeutic effect by acting as a full agonist of the nicotinic receptor (AChR) of nematode muscle. Its action at the mammalian muscle AChR has not been elucidated to date despite its wide use as an anthelmintic in humans and cattle. By single channel and macroscopic current recordings, we investigated the interaction of levamisole with the mammalian muscle AChR. Levamisole activates mammalian AChRs. However, single channel openings are briefer than those activated by acetylcholine (ACh) and do not appear in clusters at high concentrations. The peak current induced by levamisole is about 3% that activated by ACh. Thus, the anthelmintic acts as a weak agonist of the mammalian AChR. Levamisole also produces open channel blockade of the AChR. The apparent affinity for block (190 microm at -70 mV) is similar to that of the nematode AChR, suggesting that differences in channel activation kinetics govern the different sensitivity of nematode and mammalian muscle to anthelmintics. To identify the structural basis of this different sensitivity, we performed mutagenesis targeting residues in the alpha subunit that differ between vertebrates and nematodes. The replacement of the conserved alphaGly-153 with the homologous glutamic acid of nematode AChR significantly increases the efficacy of levamisole to activate channels. Channel activity takes place in clusters having two different kinetic modes. The kinetics of the high open probability mode are almost identical when the agonist is ACh or levamisole. It is concluded that alphaGly-153 is involved in the low efficacy of levamisole to activate mammalian muscle AChRs.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources