Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Jul;207(Pt 15):2663-9.
doi: 10.1242/jeb.01071.

Developmental allometry of pulmonary structure and function in the altricial Australian pelican Pelecanus conspicillatus

Affiliations
Comparative Study

Developmental allometry of pulmonary structure and function in the altricial Australian pelican Pelecanus conspicillatus

Roger S Seymour et al. J Exp Biol. 2004 Jul.

Abstract

Quantitative methods have been used to correlate maximal oxygen uptake with lung development in Australian pelicans. These birds produce the largest altricial neonates and become some of the largest birds capable of flight. During post-hatching growth to adults, body mass increases by two orders of magnitude (from 88 g to 8.8 kg). Oxygen consumption rates were measured at rest and during exposure to cold and during exercise. Then the lungs were quantitatively assessed using morphometric techniques. Allometric relationships between body mass (M) and gas exchange parameters (Y) were determined and evaluated by examining the exponents of the equation Y=aM(b). This intraspecific study was compared to interspecific studies of adult birds reported in the literature. Total lung volume scales similarly in juvenile pelicans (b=1.05) as in adult birds (b=1.02). However, surface area of the blood-gas barrier greatly increases (b=1.25), and its harmonic mean thickness does not significantly change (b=0.02), in comparison to exponents from adult birds (b=0.86 and 0.07, respectively). As a result, the diffusing capacity of the blood-gas tissue barrier increases much more during development (b=1.23) than it does in adult birds of different sizes (b=0.79). It increases in parallel to maximal oxygen consumption rate (b=1.28), suggesting that the gas exchange system is either limited by lung development or possibly symmorphic. The capacity of the oxygen delivery system is theoretically sufficient for powered flight well in advance of the bird's need to use it.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources