Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Nov;92(5):2878-86.
doi: 10.1152/jn.00367.2004. Epub 2004 Jun 16.

Factors governing the form of the relation between muscle force and the EMG: a simulation study

Affiliations
Free article

Factors governing the form of the relation between muscle force and the EMG: a simulation study

Ping Zhou et al. J Neurophysiol. 2004 Nov.
Free article

Abstract

The dependence of the form of the EMG-force relation on key motoneuron and muscle properties was explored using a simulation approach. Surface EMG signals and isometric forces were simulated using existing motoneuron pool, muscle force, and surface EMG models, based primarily on reported properties of the first dorsal interosseous (FDI) muscle in humans. Our simulation results indicate that the relation between electrical and mechanical properties of the individual motor unit level plays the dominant role in determining the overall EMG amplitude-force relation of the muscle, while the underlying motor unit firing rate strategy appears to be a less important factor. However, different motor unit firing rate strategies result in substantially different relations between counts of the numbers of motoneuron discharges and the isometric force. Our simulation results also show that EMG amplitude (estimated as the average rectified value) increases as a result of synchronous discharges of different motor units within the pool, but the magnitude of this increase is determined primarily by the action potential duration of the synchronized motor units. Furthermore, when the EMG effects are normalized to their maximum levels, motor unit synchrony does not exert significant effects on the form of the EMG-force relation, provided that the synchrony level is held similar at different excitation levels.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources