Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul;12(1):119-23.

Ceramide triggers caspase activation during gamma-radiation-induced apoptosis of human glioma cells lacking functional p53

Affiliations
  • PMID: 15201971

Ceramide triggers caspase activation during gamma-radiation-induced apoptosis of human glioma cells lacking functional p53

Shigeru Hara et al. Oncol Rep. 2004 Jul.

Abstract

We have previously shown that treatment of human glioma U87-MG cells expressing wild-type p53 with a DNA topoisomerase II inhibitor, etoposide resulted in ceramide-dependent apoptotic cell death. However, U87-W E6 cells lacking functional p53 due to the expression of human papilloma virus type 16 (HPV-16) E6 oncoprotein were resistant to etoposide. In order to gain insight into the roles of p53 and ceramide in gamma-radiation-induced glioma cell death, we used U87-W E6 and vector-infected U87-LXSN cells. U87-LXSN glioma cells expressing wild-type p53 were relatively resistant to gamma-radiation. U87-W E6 cells, which lost functional p53, became susceptible to radiation-induced apoptosis. Activation of caspase-3, and formation of ceramide by acid sphingomyelinase, but not by neutral sphingomyelinase, were associated with p53-independent apoptosis. Radiation-induced caspase activation and apoptotic death in U87-W E6 cells were modified by the agents which affected ceramide metabolism. SR33557, an inhibitor of acid sphingomyelinase, suppressed radiation-induced caspase activation and then apoptotic cell death. In contrast, N-oleoylethanolamine (OE) and D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), which inhibit ceramidase and UDP-glucose:ceramide glucosyltransferase-1, respectively, and then augment ceramide formation, enhanced radiation-induced caspase activation. These results indicate that glioma cells with functional p53 were relatively resistant to gamma-radiation, and that ceramide may play an important role in caspase activation during gamma-radiation-induced apoptosis of glioma cells lacking functional p53.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources