Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004;21(2):67-95.
doi: 10.1615/critrevtherdrugcarriersyst.v21.i2.10.

Caveolae--an alternative endocytotic pathway for targeted drug delivery

Affiliations
Review

Caveolae--an alternative endocytotic pathway for targeted drug delivery

Gyorgy Bathori et al. Crit Rev Ther Drug Carrier Syst. 2004.

Abstract

Caveolae are bottleshape-like invaginations of the plasma membrane. After internalization they are involved in endocytosis, transcytosis, potocytosis, and pinocytosis. Our recently expanded knowledge has made clear that various molecules and macromolecular complexes enter the cells after docking on caveolar receptors, before subsequent internalization of the caveolae. The internalization is initiated by the ligand receptor interaction. Folate, cholesterol, serum lipoproteins, and liposomes are among the most common examples. It is important to point out that, in contrast to the classic clathrin-dependent endocytosis, the caveolar internalization pathway seems to avoid the lysosomes. Internalized caveolae fuse with caveosomes, and the caveosomes deliver their contents into other subcellular (non-lysosomal) compartments. The bypass of the acidic and harmful milieu might be a major advantage for drug delivery via the caveolar pathway. Not all cell types have caveolae. Cells, where the Caveolin I protein is not expressed, do not develop caveolar invaginations. However, these cells have caveolar-equivalent plasma membrane domains, so-called "lipid rafts." Lipid rafts are assembled from the same lipid constituents and proteins as caveolae, but they are flat. Specific ligands may also dock on appropriate receptors of the raft domain. As a complication, certain types of ligand-covered raft receptors can migrate to clathrin-coated pits and get internalized via clathrin-coated vesicles. Nevertheless, suitable ligands or antibodies developed against proteins of the caveolar/raft domains may selectively direct the attached drug carrier to the less harmful caveolar/raft pathway. Thus, understanding of caveolar transport may help in the rational design of more effective drug carriers.

PubMed Disclaimer

Similar articles

Cited by

Publication types