Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2004 Apr;7(2):63-71.
doi: 10.1080/1025584042000206461.

Stochastic-rheological simulation of free-fall arm impact in children: application to playground injuries

Affiliations
Clinical Trial

Stochastic-rheological simulation of free-fall arm impact in children: application to playground injuries

Peter L Davidson et al. Comput Methods Biomech Biomed Engin. 2004 Apr.

Abstract

The aim of this study was to develop and pilot a stochastic-rheological biomechanical model to investigate the mechanics of impact fractures in the upper limbs of children who fall in everyday situations, such as when playing on playground equipment. The rheological aspect of the model characterises musculo-skeletal tissues in terms of inertial, elastic and viscous parameters. The stochastic aspect of the model allows natural variation of children's musculo-skeletal mechanical properties to be accounted for in the analysis. The relationship of risk factors, such as fall height, impact surface, child mass and bone density, to the probability of sustaining an injury in playground equipment falls were examined and found to closely match findings in epidemiological, clinical and biomechanical literature. These results suggest that the stochastic-rheological model is a useful tool for the evaluation of arm fracture risk in children. Once fully developed, information from this model will provide the basis for recommendations for modifications to playground equipment and surface standards.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources