X-ray diffraction of bacteriorhodopsin photocycle intermediates
- PMID: 15204622
- DOI: 10.1080/09687680410001666345
X-ray diffraction of bacteriorhodopsin photocycle intermediates
Abstract
Recent advances in the crystallography of bacteriorhodopsin, the light-driven proton pump, have yielded structural models for all intermediates of the photochemical cycle. For seven of the species, X-ray diffraction data were collected from trapped photostationary states in crystals, and for the two remaining ones the structures of selected mutants are available. The changes of the retinal chromophore, protein and bound water describe, at an atomic level, how accommodation of the twisted photoisomerized retinal to its binding site causes de-protonation of the retinal Schiff base and initiates cascades of gradual conformational rearrangements of the protein. One cascade propagates in the extracellular direction and results in proton release, and the other in the cytoplasmic direction and results in side-chain and main-chain rearrangements, formation of a chain of hydrogen-bonded water, and proton uptake from the bulk. Such local-global conformational coupling, with gradual spreading of a local perturbation over the rest of the protein, might be the uniting principle of transporters and receptors.
Similar articles
-
High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle.Nature. 1999 Oct 21;401(6755):822-6. doi: 10.1038/44623. Nature. 1999. PMID: 10548112
-
Local-global conformational coupling in a heptahelical membrane protein: transport mechanism from crystal structures of the nine states in the bacteriorhodopsin photocycle.Biochemistry. 2004 Jan 13;43(1):3-8. doi: 10.1021/bi035843s. Biochemistry. 2004. PMID: 14705925 Review.
-
Protein conformational changes in the bacteriorhodopsin photocycle.J Mol Biol. 1999 Mar 19;287(1):145-61. doi: 10.1006/jmbi.1999.2589. J Mol Biol. 1999. PMID: 10074413
-
Understanding structure and function in the light-driven proton pump bacteriorhodopsin.J Struct Biol. 1998 Dec 15;124(2-3):164-78. doi: 10.1006/jsbi.1998.4044. J Struct Biol. 1998. PMID: 10049804 Review.
-
Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin.J Mol Biol. 2000 Jul 28;300(5):1237-55. doi: 10.1006/jmbi.2000.3884. J Mol Biol. 2000. PMID: 10903866
Cited by
-
Microbial rhodopsins: wide distribution, rich diversity and great potential.Biophys Physicobiol. 2015 Dec 11;12:121-9. doi: 10.2142/biophysico.12.0_121. eCollection 2015. Biophys Physicobiol. 2015. PMID: 27493861 Free PMC article. Review.
-
Conformational changes in the archaerhodopsin-3 proton pump: detection of conserved strongly hydrogen bonded water networks.J Biol Phys. 2012 Jan;38(1):153-68. doi: 10.1007/s10867-011-9246-4. Epub 2011 Dec 10. J Biol Phys. 2012. PMID: 23277676 Free PMC article.
-
Light-controlled spin filtering in bacteriorhodopsin.Nano Lett. 2015 Feb 11;15(2):1052-6. doi: 10.1021/nl503961p. Epub 2015 Jan 28. Nano Lett. 2015. PMID: 25621438 Free PMC article.
-
Near-IR resonance Raman spectroscopy of archaerhodopsin 3: effects of transmembrane potential.J Phys Chem B. 2012 Dec 20;116(50):14592-601. doi: 10.1021/jp309996a. Epub 2012 Dec 11. J Phys Chem B. 2012. PMID: 23189985 Free PMC article.
-
Magic angle spinning NMR of G protein-coupled receptors.Prog Nucl Magn Reson Spectrosc. 2022 Feb;128:25-43. doi: 10.1016/j.pnmrs.2021.10.002. Epub 2021 Nov 1. Prog Nucl Magn Reson Spectrosc. 2022. PMID: 35282868 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources