Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003:527:55-65.
doi: 10.1007/978-1-4615-0135-0_6.

Macrophage activating properties of the tryptophan catabolite picolinic acid

Affiliations
Review

Macrophage activating properties of the tryptophan catabolite picolinic acid

Maria Carla Bosco et al. Adv Exp Med Biol. 2003.

Abstract

Recent studies have suggested a role for aminoacid catabolites as important regulators of macrophage (Mphi) activities. We reported previously that picolinic acid (PA), a tryptophan catabolite produced under inflammatory conditions and a costimulus with IFNgamma of Mphi effector functions, is a selective inducer of the Mphi inflammatory protein-1alpha (MIP-1alpha) and -1beta (MIPs), two CC-chemokines involved in the elicitation of the inflammatory reactions and in the development of the Th1 responses. In this study, we have investigated the effects of IFNgamma on PA-induced MIPs expression and secretion by mouse Mphi as well as the regulation of MIP-1alpha/beta receptor, CCR5, by both stimuli alone or in combination. We demonstrated that IFNgamma inhibited MIPs mRNA stimulation by PA in a dose-and time-dependent fashion, despite its ability to induce other CC- or CXC chemokines. MIPs mRNA down-regulation was associated with decreased intracellular chemokine expression and secretion and was dependent on both mRNA destabilization and gene transcription inhibition. Moreover, IFNgamma inhibitory effects were stimulus-specific because MIPs induction by PA was either unaffected or increased by the anti-inflammatory cytokines, IL-10 and IL-4, or the pro-inflammatory stimulus, LPS, respectively. In contrast, we found that IFNgamma increased CCR5 basal expression, whereas PA down-regulated both constitutive and IFNgamma-induced CCR5 mRNA and protein levels. These results demonstrate that IFNgamma and PA have reciprocal effects on the production of MIPs chemokines and the expression of their receptor. The concerted action of IFNgamma and PA on MIP-1alpha/beta chemokine/receptor system is likely to be of pathophysiological significance and to represent an important regulatory mechanism for leukocyte recruitment and distribution into damaged tissues during inflammatory responses.

PubMed Disclaimer

LinkOut - more resources