Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003:527:443-53.
doi: 10.1007/978-1-4615-0135-0_52.

Identification and expression of alpha cDNA encoding human 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD): a key enzyme for the tryptophan-niacine pathway and quinolinate hypothesis

Affiliations

Identification and expression of alpha cDNA encoding human 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD): a key enzyme for the tryptophan-niacine pathway and quinolinate hypothesis

Shin-Ichi Fukuoka et al. Adv Exp Med Biol. 2003.

Abstract

Quinolinate (quinolinic acid) is a potent endogenous excitotoxin of neuronal cells. Elevation of quinolinate levels in the brain has been implicated in the pathogenesis of various neurodegenerative disorders, the so-called "quinolinate hypothesis." Quinolinate is non-enzymatically derived from 2-amino-3-carboxymuconate-6-semialdehyde (ACMS). 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD) is the only known enzyme which can process ACMS to a benign catabolite and thus prevent the accumulation of quinolinate from ACMS. ACMSD seems to be regulated by nutritional and hormonal signals, but its molecular mechanism has, to date, been largely unknown. Utilizing partial amino acid sequences obtained from highly purified porcine kidney ACMSD, a cDNA encoding human ACMSD was cloned and characterized. The cDNA encodes a unique open reading frame of 336 amino acids and displays little homology to any known enzymes or motifs in mammalian databases, suggesting that ACMSD may contain a new kind of protein fold. Real-time PCR-based quantification of ACMSD revealed very low but significant levels of the expression in the brain. Brain ACMSD messages was down- and up-regulated in response to low protein diet and streptozocin-induced diabetes, respectively. Expression of QPRT, another enzyme which catabolizes quinolinate, was also found in the brain. This suggests that a pathway does exist by which the levels of quinolinate in the brain are regulated. In this report, we address the molecular basis underlying quinolinate metabolism and the regulation of ACMSD expression.

PubMed Disclaimer

Similar articles

Cited by

Associated data

LinkOut - more resources