Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Jun 24;42(6):939-46.
doi: 10.1016/j.neuron.2004.05.019.

Vesicular dopamine release elicits an inhibitory postsynaptic current in midbrain dopamine neurons

Affiliations
Free article
Comparative Study

Vesicular dopamine release elicits an inhibitory postsynaptic current in midbrain dopamine neurons

Michael J Beckstead et al. Neuron. .
Free article

Abstract

Synchronous activation of dopamine neurons, for instance upon presentation of an unexpected rewarding stimulus, results in the release of dopamine from both terminals in projection areas and somatodendritic sites within the ventral midbrain. This report describes an inhibitory postsynaptic current (IPSC) that was elicited by dopamine in slices from mouse midbrain. The IPSC was tetrodotoxin sensitive, calcium dependent, and blocked by a D2 receptor antagonist. Inhibition of monoamine transporters prolonged the IPSC, indicating that the time course of dopamine neurotransmission is tightly regulated by reuptake. Changing the stimulus intensity altered the amplitude but not the time course of the IPSC, whose onset was faster than could be reproduced with iontophoresis. The results indicate a rapid rise in dopamine concentration at the D2 receptors, suggesting that dopamine that is released by a train of action potentials acts in a localized area rather than in a manner consistent with volume transmission.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources